

PIC16F87/88 Data Sheet

18/20-Pin Enhanced FLASH Microcontrollers with nanoWatt Technology

© 2002 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

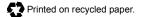
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUS, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

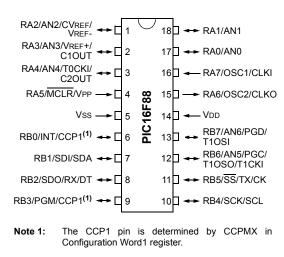
18/20-Pin Enhanced FLASH MCUs with nanoWatt Technology

Low Power Features:

- Power Managed modes:

 - RC_RUN 7 μA, 31.25 kHz, 2V
 - SEC_RUN 14 μA, 32 kHz, 2V
 - SLEEP 0.2 μA, 2V
- Timer1 oscillator 1.3 μA, 32 kHz, 2V
- Watchdog Timer 0.7 μA, 2V
- · Two-Speed Oscillator Start-up

Oscillators:

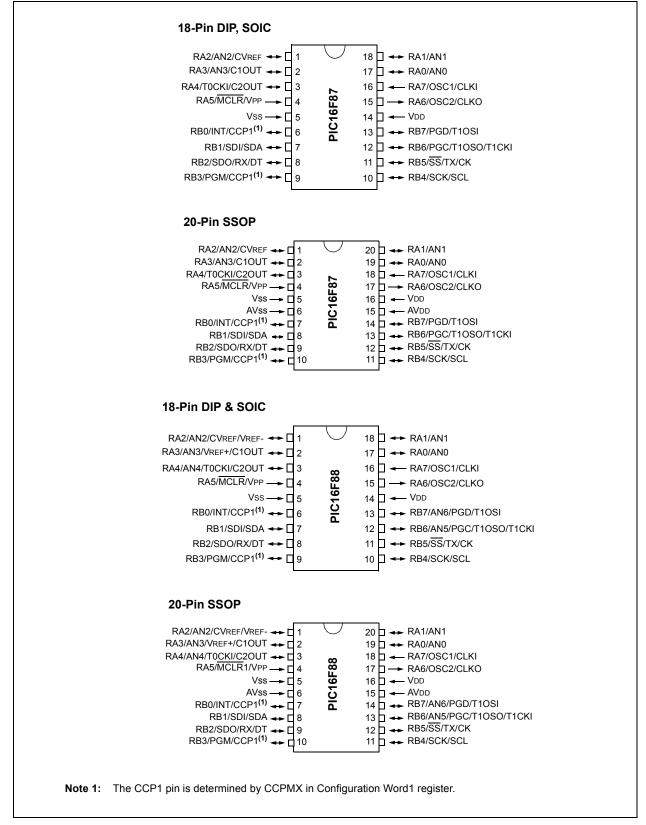

- Three Crystal modes:
- LP, XT, HS up to 20 MHz
- Two External RC modes
- One External Clock mode:
- ECIO up to 20 MHz
- Internal oscillator block:
- 8 user selectable frequencies: 31 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz

Peripheral Features:

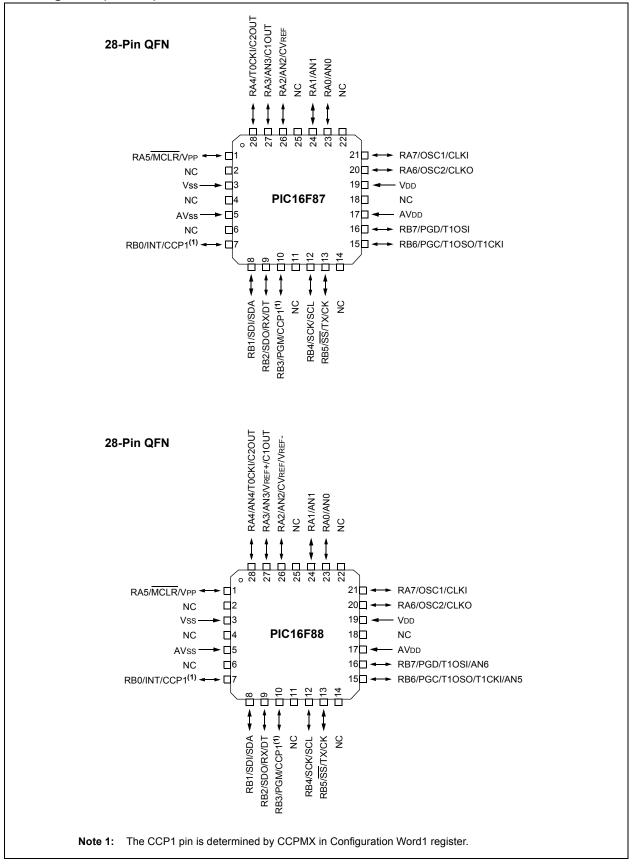
- Capture, Compare, PWM (CCP) module:
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 10-bit, 7-channel Analog-to-Digital Converter
- Synchronous Serial Port (SSP) with SPI™ (Master/Slave) and I²C™ (Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address detection:
 - RS-232 operation using internal oscillator (no external crystal required)
- · Dual Analog Comparator module:
 - Programmable on-chip voltage reference
 - Programmable input multiplexing from device inputs and internal voltage reference
 - Comparator outputs are externally accessible

Pin Diagram

18-Pin DIP, SOIC



Special Microcontroller Features:


- 100,000 erase/write cycles Enhanced FLASH program memory typical
- 1,000,000 typical erase/write cycles EEPROM data memory typical
- EEPROM Data Retention: > 40 years
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- · Processor read/write access to program memory
- Low Voltage Programming
- In-Circuit Debugging via two pins
- Extended Watchdog Timer (WDT):
 Programmable period from 1 ms to 268s
- Wide operating voltage range: 2.0V to 5.5V

	Prog	ram Memory	Data N	lemory	I/O	10-bit	ССР				Timers
Device	FLASH (bytes)	# Single Word Instructions	SRAM (bytes)	EEPROM (bytes)		A/D (ch)		USART	Comparators	SSP	8/16-bit
PIC16F87	7168	4096	368	256	16	0	1	Y	2	Y	2/1
PIC16F88	7168	4096	368	256	16	1	1	Y	2	Y	2/1

Pin Diagrams

Pin Diagrams (Cont'd)

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	11
3.0	Data EEPROM and FLASH Program Memory	
4.0	Oscillator Configurations	
5.0	I/O Ports	
6.0	Timer0 Module	
7.0	Timer1 Module	
8.0	Timer2 Module	81
9.0	Capture/Compare/PWM (CCP) Module	
10.0	Synchronous Serial Port (SSP) Module	
11.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
12.0	Analog-to-Digital Converter (A/D) Module	115
13.0	Comparator Module	123
14.0	Comparator Voltage Reference Module	129
15.0	Special Features of the CPU	131
16.0	Instruction Set Summary	
17.0	Development Support	
18.0	Electrical Characteristics	
19.0	DC and AC Characteristics Graphs and Tables	193
20.0	Packaging Information	195
Appe	endix A: Revision History	
Appe	andix B: Device Differences	
Index	<	
On-L	ine Support	
Syste	ems Information and Upgrade Hot Line	
Read	ler Response	
PIC1	6F87/88 Product Identification System	213

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

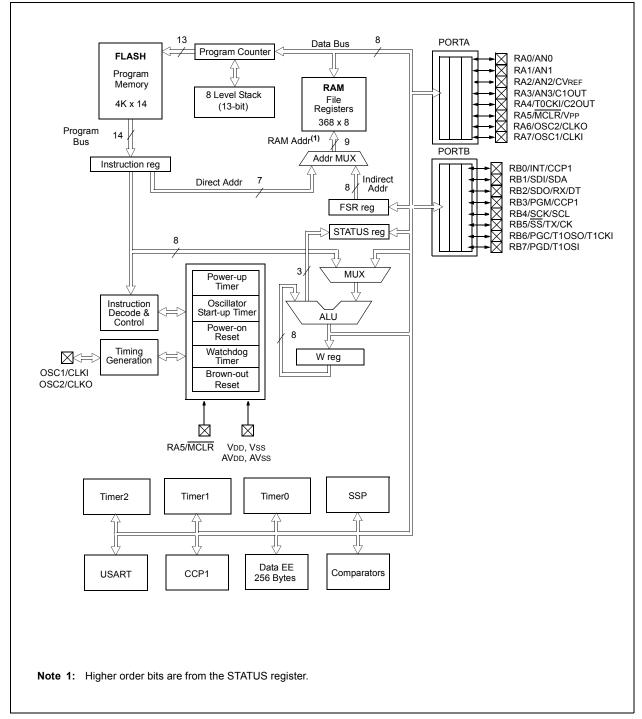
1.0 DEVICE OVERVIEW

This document contains device specific information for the operation of the PIC16F87/88 devices. Additional information may be found in the PICmicro™ Mid-Range MCU Reference Manual (DS33023), which may be downloaded from the Microchip web site. This Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC16F87/88 belongs to the Mid-Range family of the PICmicro[®] devices. Block diagrams of the devices are shown in Figure 1-1 and Figure 1-2. These devices contain features that are new to the PIC16 product line:

- Low Power modes: The first PIC16 device to have Low Power modes that extend past SLEEP mode. RC_RUN allows the core and peripherals to be clocked from the INTRC, while SEC_RUN allows the core and peripherals to be clocked from the Low Power Timer1. Refer to Section 4.7 for further details.
- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz, and 8 MHz. The INTRC can be configured as a primary or secondary clock source. Refer to Section 4.5 for further details.
- The Timer1 module current consumption has been greatly reduced from 20 μ A (previous PIC16 devices) to 1.3 μ A typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 7.0 for further details.
- Extended Watchdog Timer (WDT) that can have a programmable period from 1 ms to 268s. The WDT has its own 16-bit prescaler. Refer to Section 15.12 for further details.
- Two-Speed Start-up: When the oscillator is configured for LP, XT, or HS, this feature will clock the device from the INTRC while the oscillator is warming up. This, in turn, will enable almost immediate code execution. Refer to Section 15.12.4 for further details.
- Fail-Safe Clock Monitor: This feature will allow the device to continue operation if the primary or secondary clock source fails, by switching over to the INTRC.
- The A/D module has a new register for PIC16 devices named ANSEL. This register allow easier configuration of Analog or Digital I/O pins.

TABLE 1-1: AVAILABLE MEMORY IN PIC16F87/88 DEVICES


Device	Program	Data	Data
	FLASH	Memory	EEPROM
PIC16F87/88	4K x 14	368 x 8	256 x 8

There are 16 I/O pins that are user configurable on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- · External Interrupt
- Change on PORTB Interrupt
- Timer0 Clock Input
- Low Power Timer1 Clock/Oscillator
- · Capture/Compare/PWM
- 10-bit, 7-channel A/D Converter (PIC16F88 only)
- SPI/I²C
- · Two Analog Comparators
- USART
- MCLR (RA5) can be configured as an Input

Table 1-2 details the pinout of the device with descriptions and details for each pin.

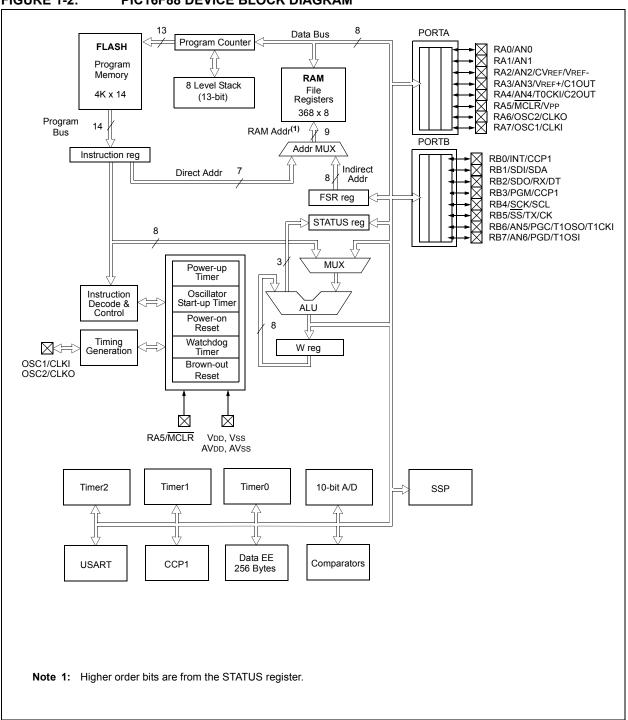


FIGURE 1-2: PIC16F88 DEVICE BLOCK DIAGRAM

 $\ensuremath{\textcircled{}^{\odot}}$ 2002 Microchip Technology Inc.

TABLE 1-2:	PIC16F87/88 PINOUT DESCRIPTION
------------	--------------------------------

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTA is a bi-directional I/O port.
RA0/AN0	17	19	23			
RA0				I/O	TTL	Bi-directional I/O pin.
AN0				I	Analog	Analog input channel 0.
RA1/AN1	18	20	24			
RA1				I/O	TTL	Bi-directional I/O pin.
AN1				I	Analog	Analog input channel 1.
RA2/CVREF/AN2/VREF-	1	1	26			
RA2				I/O	TTL	Bi-directional I/O pin.
CVREF				0		Comparator VREF output.
AN2				I	Analog	Analog input channel 2.
VREF- ⁽⁴⁾				I	Analog	A/D reference voltage (Low) input.
RA3/AN3/VREF+/C1OUT	2	2	27			
RA3				I/O	TTL	Bi-directional I/O pin.
AN3				I	Analog	Analog input channel 3.
VREF+ ⁽⁴⁾					Analog	A/D reference voltage (High) input.
C1OUT				0		Comparator1 output.
RA4/AN4/T0CKI/C2OUT	3	3	28			
RA4				I/O	ST	Bi-directional I/O pin.
AN4 ⁽⁴⁾				1	Analog	Analog input channel 4.
TOCKI				I	ST	Clock input to the TMR0 timer/counter.
C2OUT				0		Comparator2 output.
RA5/MCLR/VPP	4	4	1			
RA5					ST	Input pin.
MCLR				I	ST	Master Clear (Reset). Input/programming voltage input. This pin is an active low RESET to the device.
VPP				Р	_	Programming voltage input.
	4.5	47	00			r rogramming voltage mpat.
RA6/OSC2/CLKO RA6	15	17	20	I/O	ST	Pi directional I/O pin
OSC2				0	-	Bi-directional I/O pin. Oscillator crystal output. Connects to crystal or
0002				U		resonator in Crystal Oscillator mode.
CLKO				0		In RC mode, this pin outputs CLKO signal, which has
				-		1/4 the frequency of OSC1, and denotes the
						instruction cycle rate.
RA7/OSC1/CLKI	16	18	21			
RA7	10	10	21	I/O	ST	Bi-directional I/O pin.
OSC1				"C	ST/CMOS ⁽³⁾	Oscillator crystal input.
CLKI				I	-	External clock source input.
Legend: I = Input	1	0 = 0	utput		I/O = Input/0	Dutput P = Power
- = Not used		U = U TTI = T	•		ST = Schmi	•

– = Not used TTL = TTL Input ST = Schmitt Trigger Input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: PIC16F88 devices only.

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT/CCP1 RB0 INT CCP1	6	7	7	I/O I I/O	TTL ST ⁽¹⁾ ST	Bi-directional I/O pin. External interrupt pin. Capture input, Compare output, PWM output.
RB1/SDI/SDA RB1 SDI SDA	7	8	8	I/O I I/O	TTL ST ST	Bi-directional I/O pin. SPI Data in. I ² C Data.
RB2/SDO/RX/DT RB2 SDO RX DT	8	9	9	I/O O I I/O	TTL ST	Bi-directional I/O pin. SPI Data out. USART asynchronous receive. USART synchronous detect.
RB3/CCP1/PGM RB3 CCP1 PGM	9	10	10	I/O I/O I	TTL ST ST	Bi-directional I/O pin. Capture input, Compare output, PWM output. Low Voltage ICSP programming enable pin.
RB4/SCK/SCL RB4 SCK SCL	10	11	12	I/O I/O I	TTL ST ST	Bi-directional I/O pin. Interrupt-on-change pin. Synchronous serial clock input/output for SPI. Synchronous serial clock Input for I ² C.
RB5/SS/TX/CK RB5 SS TX CK	11	12	13	I/O I O I/O	TTL TTL	Bi-directional I/O pin. Interrupt-on-change pin. Slave select for SPI in Slave mode. USART asynchronous transmit. USART synchronous clock.
RB6/T1OSO/T1CKI/ PGC/AN5 RB6 T1OSO T1CKI PGC AN5 ⁽⁴⁾	12	13	15	I/O O I I/O I	TTL ST ST ST ⁽²⁾	Bi-directional I/O pin. Interrupt-on-change pin. Timer1 Oscillator output. Timer1 external clock input. In-circuit debugger and programming clock pin. Analog input channel 5.
RB7/T1OSI/PGD/AN6 RB7 T1OSI PGD AN6 ⁽⁴⁾	13	14	16	I/O 	TTL ST ST ⁽²⁾	Bi-directional I/O pin. Interrupt-on-change pin. Timer1 Oscillator input. In-circuit debugger and ICSP programming data pir Analog input channel 6.
Vss	5	5, 6	3, 5	Р	-	Ground reference for logic and I/O pins.
Vdd	14	15, 16	17, 19	Р		Positive supply for logic and I/O pins.

TABLE 1-2: PIG	C16F87/88 PINOUT DESCRIPTION (CONTINUED)
----------------	--

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: PIC16F88 devices only.

NOTES:

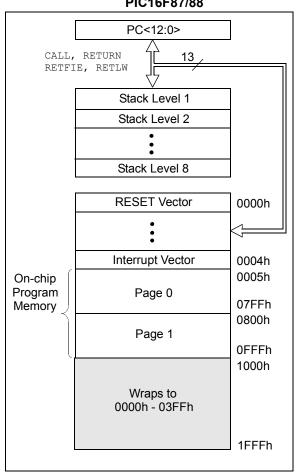
2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F87/88. These are the program memory and the data memory. Each block has its own bus, so access to each block can occur during the same oscillator cycle.

The data memory can be further broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory, but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/ write. The PIC16F87/88's 256 bytes of data EEPROM memory have the address range 00h-FFh. More details on the EEPROM memory can be found in Section 3.0.

Additional information on device memory may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023).


2.1 **Program Memory Organization**

The PIC16F87/88 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F87/88, the first 4K x 14 (0000h-0FFFh) is physically implemented (see Figure 2-1). Accessing a location above the physically implemented address will cause a wraparound. For example, the same instruction will be accessed at locations 020h, 420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

PROGRAM MEMORY MAP AND STACK FOR PIC16F87/88

2.2 Data Memory Organization

The Data Memory is partitioned into multiple banks that contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain SFRs. Some "high use" SFRs from one bank may be mirrored in another bank for code reduction and quicker access (e.g., the STATUS register is in Banks 0 - 3).

Note: EEPROM Data Memory description can be found in Section 3.0 of this data sheet.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR.

	File Address		File Address		File Address	ŀ	File Address
Indirect addr		Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION	81h	TMR0	100h	OPTION	18011 181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	WDTCON	105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON1	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h	General		General	
CCP1CON	l 17h 18h		97h	Purpose		Purpose	
RCSTA TXREG	19h	TXSTA	98h	Register 16 Bytes		Register 16 Bytes	
RCREG	1911 1Ah	SPBRG	99h 9Ah	TO Dytes		TO Dytes	
ROREO	1Bh		9An 9Bh				
	1Ch	CMCON	9Dh 9Ch				
	1Dh	CVRCON	9Dh				
	1Eh		9Eh				
	1Fh		9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
		General	Aun	General		General	
		Purpose		Purpose Register		Purpose Register	
General Purpose		Register 80 Bytes		80 Bytes		80 Bytes	
Register		00 _ j 100	EFh	00 _ j.00	16Fh	00 _ j 100	1EFh
96 Bytes		accesses	F0h		170h	200005000	1F0h
00 29100		70h-7Fh		accesses 70h-7Fh		accesses 70h - 7Fh	
	7Fh		FFh		17Fh		1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
	emented data m nysical register.	nemory locations, re	ad as '0'.				
		d, maintain this regi	ster clear.				
		<i>,</i>					

Advance Information

FI	GI	IRF	2-3:	
	\sim		<u></u>	

PIC16F88 REGISTER FILE MAP

	Address	A	File ddress	A	File Address	A	File Address
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr. ^(*)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	WDTCON	105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
-	07h		87h	_	107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON1	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h	General		General	
RCSTA	18h	TXSTA	98h	Purpose Register		Purpose Register	
TXREG	19h	SPBRG	99h	16 Bytes		16 Bytes	
RCREG	1Ah		9Ah				
	1Bh	ANSEL	9Bh				
	1Ch	CMCON	9Ch				
	1Dh	CVRCON	9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
7.200110	20h	7.800111			120h		1A0h
		General	A0h	General		General	
		Purpose		Purpose		Purpose	
General		Register 80 Bytes		Register 80 Bytes		Register 80 Bytes	
Purpose Register		00 Dyt03	EFh	00 Bytes	16Fh	00 Dyi03	1EFh
-			F0h		170h		1F0h
96 Bytes		accesses		accesses		accesses	
		70h-7Fh		70h-7Fh		70h - 7Fh	
	7Fh		FFh		17Fh		1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
* Not a	physical re	data memory locatio gister. served, maintain thi					

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1 :	SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on: BOR
Bank 0											
00h ⁽²⁾	INDF		g this locati sical registe		ntents of FSF	R to address of	data memory	,		0000	0000
01h	TMR0	Timer0 Mo	odule Regis	ter						XXXX	XXXX
02h ⁽²⁾	PCL	Program (Counter (PC	c) Least Sig	nificant Byte					0000	0000
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001	1xxx
04h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	ointer					XXXX	XXXX
05h	PORTA - 87 PORTA - 88	PORTA D	RTA Data Latch when written; PORTA pins when read								0000
06h	PORTB - 87 PORTB - 88	PORTB D	TB Data Latch when written; PORTB pins when read								XXXX XXXX
07h	_	Unimplem	ented							_	_
08h	—	Unimplem	ented							_	_
09h	—	Unimplem	implemented							_	_
0Ah ^(1,2)	PCLATH	_	—	_	Write Buffe	for the uppe	r 5 bits of the	e Program (Counter	0	0000
0Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	000x
0Ch	PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000
0Dh	PIR2	OSFIF	CMIF		EEIF	_				00-0	
0Eh	TMR1L	Holding R	egister for t	he Least Się	gnificant Byte	e of the 16-bit	TMR1 Regi	ster		XXXX	XXXX
0Fh	TMR1H	Holding R	egister for t	he Most Sig	nificant Byte	of the 16-bit	TMR1 Regis	ster		XXXX	XXXX
10h	T1CON	_	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000	0000
11h	TMR2	Timer2 M	odule Regis	ter						0000	0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000
13h	SSPBUF	Synchron	ous Serial F	ort Receive	Buffer/Trans	smit Register				XXXX	XXXX
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000
15h	CCPR1L	Capture/C	Compare/PV	VM Register	⁻ 1 (LSB)					XXXX	XXXX
16h	CCPR1H	Capture/C	Compare/PV	VM Register						XXXX	XXXX
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x
19h	TXREG	USART T	ransmit Dat	a Register						0000	0000
1Ah	RCREG	USART R	eceive Data	Register						0000	0000
1Bh	—	Unimplem	ented							-	-
1Ch	—	Unimplem	ented							_	_
1Dh	—	Unimplem	ented							_	_
1Eh	ADRESH ⁽⁴⁾	A/D Resu	It Register H	ligh Byte						XXXX	XXXX
1Fh	ADCON0 ⁽⁴⁾	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON	0000	00-0
	x = unknowr							ad as '0' r	-		

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

4: PIC16F88 device only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	
Bank 1											
80h ⁽²⁾	INDF		ig this locati vsical registe		ntents of FSF	R to address	data memory	,		0000 0000	
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	
82h ⁽²⁾	PCL	Program (rogram Counter (PC) Least Significant Byte								
83h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	
84h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	ointer	•	•	•		XXXX XXXX	
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽³⁾	PORTA Dat	ta Direction F	Register (TRI	SA<4:0>)		1111 1111	
86h	TRISB	PORTB D	ata Directio							1111 1111	
87h	_	Unimplem	nented							_	
88h	_	Unimplem	nented							_	
89h	_	Unimplem	nented							_	
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffe	r for the uppe	er 5 bits of the	e Program (Counter	0 0000	
8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	
8Dh	PIE2	OSFIE	CMIE	—	EEIE	—	_	_	_	00-0	
8Eh	PCON	_		_	_	—	_	POR	BOR	qq	
8Fh	OSCCON	—	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	-000 0000	
90h	OSCTUNE	—	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	
91h	_	Unimplem	nented							_	
92h	PR2	Timer2 Pe	eriod Regist	er						1111 1111	
93h	SSPADD	Synchron	ous Serial F	ort (I ² C mo	de) Address	Register				0000 0000	
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	
95h	—	Unimplem	nented							_	
96h	—	Unimplem	nented							_	
97h		Unimplem	nented							_	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	
99h	SPBRG	Baud Rate	e Generator	Register						0000 0000	
9Ah	—	Unimplem	nented							—	
9Bh	ANSEL ⁽⁴⁾	_	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	-111 1111	
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	
9Eh	ADRESL ⁽⁴⁾	A/D Resu	lt Register L	ow Byte						XXXX XXXX	
9Fh	ADCON1 ⁽⁴⁾	ADFM	ADCS2	VCFG1	VCFG0	_	_	_		0000	

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

4: PIC16F88 device only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,	
Bank 2	2										
100h ⁽²⁾	INDF		ng this locati vsical registe		ntents of FSF	R to address of	data memory	,		0000	0000
101h	TMR0	Timer0 M	odule Regis	ter						XXXX	XXXX
102h ⁽²⁾	PCL	Program	Counter's (F	PC) Least Si	gnificant Byt	е				0000	0000
103h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001	1xxx
104h ⁽²⁾	FSR	Indirect D	ndirect Data Memory Address Pointer								XXXX
105h	WDTCON	_	WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN								1000
106h	PORTB	PORTB D	ata Latch w	hen written;	PORTB pin	s when read				XXXX	XXXX
107h	—	Unimplem	nented		-						-
108h	—	Unimplem	nented							_	-
109h	—	Unimplem	nented								-
10Ah ^(1,2)	PCLATH		_	_	Write Buffe	r for the uppe	er 5 bits of the	e Program (Counter	0	0000
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000	000x
10Ch	EEDATA	EEPROM	EEPROM Data Register Low Byte								XXXX
10Dh	EEADR	EEPROM	EEPROM Address Register Low Byte							XXXX	XXXX
10Eh	EEDATH			EEPROM [Data Registe	r High Byte				xx	XXXX
10Fh	EEADRH	_	_	_	_	EEPROM A	ddress Regis	ster High By	rte		XXXX
Bank 3											
180h ⁽²⁾	INDF		ng this locati vsical registe		ntents of FSF	R to address of	data memory	,		0000	0000
181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111	1111
182h ⁽²⁾	PCL	Program	Counter (PC) Least Sig	nificant Byte					0000	0000
183h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001	1xxx
184h ⁽²⁾	FSR	Indirect D	ata Memory	Address P	ointer					XXXX	XXXX
185h		Unimplem	nented							_	_
186h	TRISB	PORTB D	ata Directio	n Register						1111	1111
187h	_	Unimplem	nented								_
188h	_	Unimplem	nented							_	-
189h		Unimplem	nented							_	-
18Ah ^(1,2)	PCLATH	—	_	_	Write Buffe	r for the uppe	er 5 bits of the	e Program (Counter	0	0000
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	000x
18Ch	EECON1	EEPGD	—	—	FREE	WRERR	WREN	WR	RD	xx	x000
18Dh	EECON2	EEPROM	Control Re	gister2 (not	a physical re	egister)		1			
	1	EEPROM Control Register2 (not a physical register) Reserved, maintain clear							0000	0000	
18Eh	—	Reserved, maintain clear Reserved, maintain clear							0000	0000	

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

4: PIC16F88 device only.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see Section 16.0, "Instruction Set Summary".

Note:	The <u>C</u> and <u>DC</u> bits operate as a borrow
	and digit borrow bit, respectively, in sub-
	traction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7	•	ster Bank Sele	•	for indirect a	ddressing)			
		2, 3 (100h - 1), 1 (00h - FF	,					
bit 6-5	RP<1:0>:	Register Ban	k Select bits	(used for dire	ect addressi	ing)		
	10 = Bank 01 = Bank 00 = Bank	3 (180h - 1F 2 (100h - 17 1 (80h - FFh 0 (00h - 7Fh i s 128 bytes	Fh))					
bit 4	TO: Time-	out bit						
		ower-up, CLF T time-out oc		ion, or SLEE	P instructior	ו		
bit 3	PD: Powe	r-down bit						
		ower-up or b ecution of the						
bit 2	Z: Zero bit							
		esult of an arit esult of an arit						
bit 1	•	carry/borrow b					וs) ⁽¹⁾	
		y-out from the rry-out from th				ed		
bit 0	C: Carry/b	orrow bit (ADI	OWF, ADDLW,	SUBLW and S	SUBWF instru	uctions) ^(1,2)		
		y-out from the	•					
	0 = No cai	rry-out from th	ne Most Sign	ificant bit of t	he result oc	curred		
	Note 1:	For borrow, complemen	the polarity i t of the seco		A subtractior	n is execute	ed by adding	g the two's
	2:	For rotate (F bit of the so	RF, RLF) ins urce register		s bit is loade	d with eithe	r the high o	r low order

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register that contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0, and the weak pull-ups on PORTB. Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer. Although the prescaler can be assigned to either the WDT or Timer0, but not both, a new divide counter is implemented in the WDT circuit to give multiple WDT time-out selection. This allows TMR0 and WDT to each have their own scaler. Refer to Section 15.12 for further details.

ER 2-2:	OPTION REGISTER (ADDRESS 81h, 181h)										
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0			
	bit 7							bit 0			
bit 7		TR Pullup Er	able bit								
	RBPU : PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled										
	0 = PORTB pull-ups are enabled by individual port latch values										
bit 6	INTEDG: Inte	errupt Edge S	Select bit								
		on rising edg on falling edg									
bit 5	TOCS: TMRC	Clock Sourc	e Select bi	t							
		n on RA4/T00 nstruction cyo		LKO)							
bit 4	TOSE: TMRC) Source Edge	e Select bit								
		nt on high-to-l nt on low-to-h									
bit 3	PSA: Presca	PSA: Prescaler Assignment bit									
	 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 										
		0		er0 module							
bit 2-0	PS<2:0>: Pro	escaler Rate	Select bits								
	Bit Value	TMR0 Rate	WDT Ra	te							
	000	1:2	1:1								
	001	1:4	1:2								
	010	1:8	1:4								
	011	1 : 16 1 : 32	<u>1:8</u> 1:16								
	100 101	1:64	1:32								
	110	1:128	1:64								
	111	1:256	1 : 128								
	Legend:										
	R = Readabl	e bit	W = Wri	table bit	U = Unimp	plemented	bit, read as	'0'			
	- n = Value a	t POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	unknown			

REGISTER 2-2: OPTION REGISTER (ADDRESS 81h, 181h)

2.2.2.3 **INTCON Register**

The INTCON Register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x			
GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF			
bit 7							bit			
GIE: Globa	I Interrupt E	nable bit								
	s all unmasl s all interru	ked interrupts pts	6							
PEIE: Perip	heral Interr	upt Enable bi	t							
		ked periphera eral interrupts								
TMR0IE: T	TMR0IE: TMR0 Overflow Interrupt Enable bit									
	s the TMR0 s the TMR0									
INTE: RB0	INT Externa	al Interrupt Er	nable bit							
		NT external ir NT external i								
RBIE: RB F	Port Change	Interrupt En	able bit							
	•	rt change inte ort change int								
TMR0IF: T	MR0 Overflo	ow Interrupt F	lag bit							
		overflowed (not overflow	must be clea	red in softw	vare)					
		al Interrupt Flannal interrupt (occurred (mu		ed in softwa	are)				
0 = The RE	30/INT exter	nal interrupt	did not occui	-						

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

0 = None of the RB7:RB4 pins have changed state

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.4 PIE1 Register

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7	·						bit (
Unimple	nented: Read	1 as '0'					
ADIE ⁽¹⁾ :	A/D Converter	Interrupt E	nable bit				
1 = Enab 0 = Disab							
RCIE: US	SART Receive	Interrupt Er	nable bit				
1 = Enab 0 = Disab							
TXIE: US	ART Transmit	Interrupt E	nable bit				
1 = Enab							
0 = Disab							
1 = Enab	ynchronous S	erial Port (S	SP) Interrup	ot Enable bit			
0 = Disab							
CCP1IE:	CCP1 Interru	ot Enable bi	t				
1 = Enab	led						
0 = Disat	led						
TMR2IE:	TMR2 to PR2	Match Inte	rrupt Enable	bit			
1 = Enab							
0 = Disab							
	TMR1 Overflo	ow Interrupt	Enable bit				
1 = Enab							

0 = Disabled

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the Peripheral interrupts.

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of
	its corresponding enable bit, or the global
	enable bit, GIE (INTCON<7>). User soft-
	ware should ensure the appropriate inter-
	rupt flag bits are clear prior to enabling an
	interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT STATUS REGISTER 1

U-0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0
—	ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

bit 7	Unimplemented: Read as '0'
bit 6	ADIF ⁽¹⁾ : A/D Converter Interrupt Flag bit (only on PIC16F86)
	1 = The A/D conversion completed (must be cleared in software)
	0 = The A/D conversion is not complete
bit 5	RCIF: USART Receive Interrupt Flag bit
	1 = The USART receive buffer is full (cleared by reading RCREG)
	0 = The USART receive buffer is not full
bit 4	TXIF: USART Transmit Interrupt Flag bit
	 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full
bit 3	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit
	1 = The transmission/reception is complete (must be cleared in software)0 = Waiting to transmit/receive
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	Capture mode:
	1 = A TMR1 register capture occurred (must be cleared in software)0 = No TMR1 register capture occurred
	Compare mode:
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	PWM mode:
	Unused in this mode
bit 1	TMR2IF: TMR2 to PR2 Interrupt Flag bit
	1 = A TMR2 to PR2 match occurred (must be cleared in software)
	0 = No TMR2 to PR2 match occurred
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = The TMR1 register overflowed (must be cleared in software)
	0 = The TMR1 register did not overflow

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bit for the EEPROM write operation interrupt.

REGISTER 2-6:	PIE2: PEF	PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2						
	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
	OSFIE	CMIE		EEIE		—	_	_
	bit 7							bit 0
bit 7	OSFIE: Os	cillator Fail In	terrupt Enab	le bit				
	1 = Enable							
	0 = Disable	d						
bit 6	CMIE: Com	CMIE: Comparator Interrupt Enable bit						
	1 = Enable							
	0 = Disable	d						
bit 5	Unimpleme	Unimplemented: Read as '0'						
bit 4	EEIE: EEPI	EEIE: EEPROM Write Operation Interrupt Enable bit						
	1 = Enable	b						
	0 = Disable	d						
bit 3-0	Unimpleme	ented: Read	as '0'					
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'
	-n = Value	at POR	'1' = Bi	it is set	'0' = Bit is	cleared	x = Bit is u	nknown

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bit for the EEPROM write operation interrupt.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT STATUS REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
OSFIF	CMIF	—	EEIF	—	_	_	—
bit 7							bit 0

- bit 7 **OSFIF:** Oscillator Fail Interrupt Flag bit
 - 1 = System oscillator failed, clock input has changed to INTRC (must be cleared in software)
 - 0 = System clock operating
- bit 6 **CMIF:** Comparator Interrupt Flag bit
 - 1 = Comparator input has changed (must be cleared in software)
 - 0 = Comparator input has not changed
- bit 5 Unimplemented: Read as '0'
- bit 4 **EEIF:** EEPROM Write Operation Interrupt Flag bit
 - 1 = The write operation completed (must be cleared in software)
 - 0 = The write operation is not complete or has not been started
- bit 3-0 Unimplemented: Read as '0'

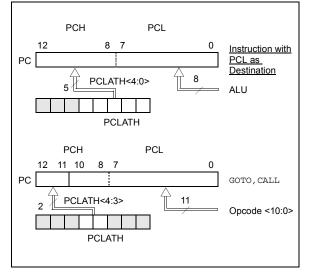
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.8 PCON Register

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are close prior to enabling an
	rupt flag bits are clear prior to enabling an
	interrupt.

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR), a Brown-out Reset, an external MCLR Reset and WDT Reset.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a 'don't care' and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration word).


REGISTER 2-8: PCON: POWER CONTROL REGISTER (ADDRESS 8Eh)

						,		
	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
		_	_		_	_	POR	BOR
	bit 7							bit 0
bit 7-2	Unimplem	nented: Rea	d as '0'					
bit 1	POR: Pow	ver-on Reset	Status bit					
	1 = No Po	wer-on Rese	et occurred					
	0 = A Pow	er-on Reset	occurred (m	ust be set in	software aft	ter a Power-	on Reset o	ccurs)
bit 0	BOR: Brow	wn-out Rese	t Status bit					
	1 = No Bro	own-out Res	et occurred					
	0 = A Brov	vn-out Rese	t occurred (m	nust be set in	software af	fter a Brown	-out Reset	occurs)
	Legend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	'0'
	- n = Value	e at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is ι	unknown

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure 2-4 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-4: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC16F87/88 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Program Memory Paging

All PIC16F87/88 devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11-bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the return instructions (which POPs the address from the stack).

Note:	The contents of the PCLATH register are unchanged after a RETURN or RETFIE instruction is executed. The user must rewrite the contents of the PCLATH regis- ter for any subsequent subroutine calls or GOTO instructions.
-------	--

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG 0x500	
	BCF PCLATH,4	
	BSF PCLATH,3	;Select page 1
		; (800h-FFFh)
	CALL SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	ORG 0x900	;page 1 (800h-FFFh)
SUB1 P1		
_	:	;called subroutine
		;page 1 (800h-FFFh)
	:	
	RETURN	waturn to
	REIORN	;return to
		;Call subroutine
		;in page 0
		; (000h-7FFh)
		, (,

3.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The Data EEPROM and FLASH Program memory is readable and writable during normal operation (over the full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are six SFRs used to read and write this memory:

- EECON1
- EECON2
- EEDATA
- EEDATH
- EEADR
- EEADRH

When interfacing the data memory block, EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. The PIC16F87/88 devices have 256 bytes of data EEPROM, with an address range from 00h to 0FFh. When writing to unimplemented locations, the charge pump will be turned off.

When interfacing the program memory block, the EEDATA and EEDATH registers form a two-byte word that holds the 14-bit data for read/write, and the EEADR and EEADRH registers form a two-byte word that holds the 13-bit address of the EEPROM location being accessed. The PIC16F87/88 devices have 4K words of program FLASH, with an address range from 0000h to 0FFFh. Addresses above the range of the respective device will wraparound to the beginning of program memory.

The EEPROM data memory allows single byte read and write. The FLASH program memory allows single word reads and four-word block writes. Program memory writes must first start with a 32-word block erase, then write in 4-word blocks. A byte write in data EEPROM memory automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device for byte or word operations.

When the device is code protected, the CPU may continue to read and write the data EEPROM memory. Depending on the settings of the write protect bits, the device may or may not be able to write certain blocks of the program memory; however, reads of the program memory are allowed. When code protected, the device programmer can no longer access data or program memory; this does NOT inhibit internal reads or writes.

3.1 EEADR and EEADRH

The EEADRH:EEADR register pair can address up to a maximum of 256 bytes of data EEPROM, or up to a maximum of 8K words of program EEPROM. When selecting a data address value, only the LSByte of the address is written to the EEADR register. When selecting a program address value, the MSByte of the address is written to the EEADRH register and the LSByte is written to the EEADR register.

If the device contains less memory than the full address reach of the address register pair, the Most Significant bits of the registers are not implemented. For example, if the device has 128 bytes of data EEPROM, the Most Significant bit of EEADR is not implemented on access to data EEPROM.

3.2 EECON1 and EECON2 Registers

EECON1 is the control register for memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, as it is when reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write or erase operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write (or erase) operation is interrupted by a MCLR, or a WDT Time-out Reset during normal operation. In these situations, following RESET, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit, EEIF in the PIR2 register, is set when write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the EEPROM write sequence.

STER 3-1:	EECON1:	EEPROM	ACCESS	CONTROL	REGISTER	R 1 (ADDR	ESS 18Ch)						
	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-0	R/S-0	R/S-0						
	EEPGD	—	—	FREE	WRERR	WREN	WR	RD						
	bit 7							bit 0						
bit 7	EEPGD : Program/Data EEPROM Select bit 1 = Accesses program memory 0 = Accesses data memory Reads '0' after a POR; this bit cannot be changed while a write operation is in progress.													
bit 6-5	Unimplemented: Read as '0'													
bit 4	1 = Erase th	FREE: EEPROM Forced Row Erase bit 1 = Erase the program memory row addressed by EEADRH:EEADR on the next WR command 0 = Perform write only												
bit 3	1 = A wri <u>te</u> (any MC	WRERR: EEPROM Error Flag bit 1 = A write operation is prematurely terminated (any MCLR or any WDT Reset during normal operation) 0 = The write operation completed												
bit 2	WREN: EE 1 = Allows 0 = Inhibits	write cycles		t										
bit 1	WR: Write	Control bit												
	can only	 1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software. 												
bit 0	1 = Initiates cleared	 0 = Write cycle to the EEPROM is complete RD: Read Control bit 1 = Initiates an EEPROM read, RD is cleared in hardware. The RD bit can only be set (not cleared) in software. 0 = Does not initiate an EEPROM read 												
	Legend:													

REGISTER 3-1:	EECON1: EEPROM ACCESS CONTROL REGISTER 1 (ADDRESS 18Ch)
---------------	---

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	S = Set only
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.3 Reading Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available in the very next cycle, in the EEDATA register; therefore, it can be read in the next instruction (see Example 3-1). EEDATA will hold this value until another read, or until it is written to by the user (during a write operation).

The steps to reading the EEPROM data memory are:

- 1. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 2. Clear the EEPGD bit to point to EEPROM data memory.
- 3. Set the RD bit to start the read operation.
- 4. Read the data from the EEDATA register.

EXAMPLE 3-1:	DATA EEPROM READ
BANKSEL EEADR	; Select Bank of EEAD

BANKSEL	EEADR	;	Select Bank of EEADR
MOVF	ADDR,W	;	
MOVWF	EEADR	;	Data Memory Address
		;	to read
BANKSEL	EECON1	;	Select Bank of EECON1
BCF	EECON1, EEPGD	;	Point to Data memory
BSF	EECON1,RD	;	EE Read
BANKSEL	EEDATA	;	Select Bank of EEDATA
MOVF	EEDATA,W	;	W = EEDATA

3.4 Writing to Data EEPROM Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then, the user must follow a specific write sequence to initiate the write for each byte.

The write will not initiate if the write sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment (see Example 3-2).

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt, or poll this bit. EEIF must be cleared by software.

The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- 10. At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set (EEIF must be cleared by firmware). If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

EXAMPLE 3-2: DATA EEPROM WRITE

				-
	BANKSEL	EECON1	'	Select Bank of EECON1
	BTFSC	EECON1,WR	;	Wait for write
	GOTO	\$-1	;	to complete
	BANKSEL	EEADR	;	Select Bank of
			;	EEADR
	MOVF	ADDR,W	;	
	MOVWF	EEADR	;	Data Memory
			;	Address to write
	MOVF	VALUE,W	;	
	MOVWF	EEDATA		Data Memory Value
			;	to write
	BANKSEL	EECON1	;	Select Bank of
			'	EECON1
	BCF	EECON1, EEPGD	;	Point to DATA
			-	memory
	BSF	EECON1,WREN	;	Enable writes
_			;	Disable INTs.
	MOVLW	55h	;	
ed nce	MOVWF	EECON2	;	Write 55h
Required	MOVLW	AAh	;	
Sec Sec	MOVWF MOVLW MOVWF	EECON2	'	Write AAh
	BSF	EECON1,WR		Set WR bit to
	DOD	THEON OF	·	begin write
	BSF	-		Enable INTs.
	BCF	EECONI, WREN	;	Disable writes

3.5 Reading FLASH Program Memory

To read a program memory location, the user must write two bytes of the address to the EEADR and EEADRH registers, set the EEPGD control bit (EECON1<7>), and then set control bit, RD (EECON1<0>). Once the read control bit is set, the program memory FLASH controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATA and EEDATH registers; therefore, it can be read as two bytes in the following instructions. EEDATA and EEDATH registers will hold this value until another read, or until it is written to by the user (during a write operation).

EXAMPLE 3-3: FLASH PROGRAM READ

I	BANKSEL	EEADRH		;	Select Bank of EEADRH
	MOVF	ADDRH, N	N	;	
	MOVWF	EEADRH		;	MS Byte of Program
				;	Address to read
	MOVF	ADDRL, N	N	;	
	MOVWF	EEADR		;	LS Byte of Program
				;	Address to read
	BANKSEL	EECON1		;	Select Bank of EECON1
	BSF	EECON1,	EEPGD	;	Point to PROGRAM
				;	memory
	BSF	EECON1,	RD	;	EE Read
				;	
	NOP			;	Any instructions
				;	here are ignored as
	NOP			;	program memory is
				;	read in second cycle
				;	after BSF EECON1,RD
	BANKSEL	EEDATA		;	Select Bank of EEDATA
	MOVF	EEDATA,	W	;	DATAL = EEDATA
	MOVWF	DATAL		;	
	MOVF	EEDATH,	W	;	DATAH = EEDATH
	MOVWF	DATAH		;	

3.6 Erasing FLASH Program Memory

The minimum erase block is 32 words. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the FLASH array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 32 words of program memory is erased. The Most Significant 11 bits of the EEADRH:EEADR point to the block being erased. EEADR< 4:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the FLASH program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to setup the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the erase takes place. This is not SLEEP mode, as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

3.6.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load EEADRH:EEADR with address of row being erased.
- Set EEPGD bit to point to program memory, set WREN bit to enable writes, and set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase.

EXAMPLE 3-4:	ERASING A FLASH PROGRAM MEMORY ROW

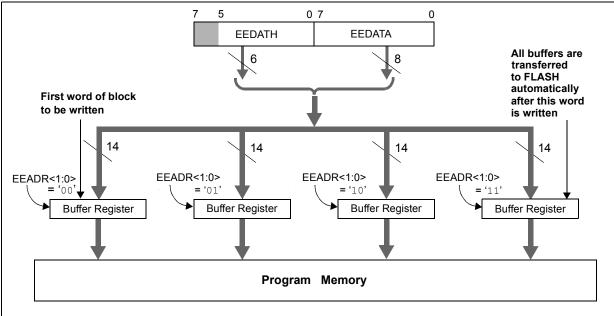
	BANKSEL	EEADRH		;	Select Bank of EEADRH
	MOVF	ADDRH,	W	;	
	MOVWF	EEADRH		;	MS Byte of Program Address to Erase
	MOVF	ADDRL,	W	;	
	MOVWF	EEADR		;	LS Byte of Program Address to Erase
ERASE_ROW					
	BANKSEL	EECON1		;	Select Bank of EECON1
	BSF	EECON1,	EEPGD	;	Point to PROGRAM memory
	BSF	EECON1,	WREN	;	Enable Write to memory
	BSF	EECON1,	FREE	;	Enable Row Erase operation
;					
	BCF	INTCON,	GIE	;	Disable interrupts (if using)
	MOVLW	55h		;	
	MOVWF	EECON2		;	Write 55h
	MOVLW	AAh		;	
	MOVWF	EECON2		;	Write AAh
	BSF	EECON1,	WR	;	Start Erase (CPU stall)
	NOP			;	Any instructions here are ignored as processor
				;	halts to begin Erase sequence
	NOP			;	processor will stop here and wait for Erase complete
				;	after Erase processor continues with 3rd instruction
	BCF	EECON1,	WREN	;	Disable writes
	BSF	INTCON,	GIE	;	Enable interrupts (if using)

3.7 Writing to FLASH Program Memory

FLASH program memory may only be written to if the destination address is in a segment of memory that is not write protected, as defined in bits WRT1:WRT0 of the device configuration word (Register 15-1). FLASH program memory must be written in four-word blocks. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where EEADR<1:0> = 00. At the same time, all block writes to program memory are done as write only operations. The program memory must first be erased. The write operation is edge-aligned, and cannot occur across boundaries.

To write to the program memory, the data must first be loaded into the buffer registers. There are four 14-bit buffer registers and they are addressed by the low 2 bits of EEADR.

Loading data into the buffer registers is accomplished via the EEADR, EEADT, EECON1 and EECON2 registers as follows:


- Set EECON1 PGD, and WREN
- Write address to EEADRH:EEADR
- Write data to EEDATA:EEDATH
- Write 55, AA to EECON2
- Set WR bit in EECON1

There are 4 buffer register words and all four locations **MUST** be written to with correct data.

After the "BSF EECON1, WR" instruction, if EEADR = xxxxx11, then a short write will occur. This short write only transfers the data to the buffer register. The WR bit will be cleared in hardware after 1 cycle. The core will not halt and there will be no EEWHLT signal generated.

After the "BSF EECON1, WR" instruction, if EEADR = xxxxx11, then a long write will occur. This transfer data will simultaneously the from EEDATH:EEDATA to the buffer registers and begin the write of all four words. The processor will execute the next instruction and then ignore the subsequent instruction. The user should place NOP instructions into the second words. The processor will then halt internal operations for typically 2 msec in which the write takes place. This is not a SLEEP mode, as the clocks and peripherals will continue to run. After the write cycle, the processor will resume operation with the 3rd instruction after the EECON1 write instruction.

After each long write, the 4 buffer registers will be reset to 3FFF.

FIGURE 3-1: BLOCK WRITES TO FLASH PROGRAM MEMORY

An example of the complete four-word write sequence is shown in Example 3-5. The initial address is loaded into the EEADRH:EEADR register pair; the four words of data are loaded using indirect addressing, assuming that a row erase sequence has already been performed.

EXAMPLE 3-5: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. The 32 words in the erase block have already been erased. ; 2. A valid starting address (the least significant bits = '00') is loaded into EEADRH:EEADR ; 3. This example is starting at 0x100, this is an application dependent setting. ; 4. The 8 bytes (4 words) of data are loaded, starting at an address in RAM called ARRAY. ; 5. This is an example only, location of data to program is application dependent. ; 6. word block is located in data memory. BANKSEL EECON1 ;prepare for WRITE procedure BSF EECON1, EEPGD ;point to program memory BSF EECON1,WREN ;allow write cycles BANKSEL word block MOVLW .4 MOVWF word block ;prepare for 4 words to be written BANKSEL EEADRH ;Start writing at 0x100 MOVIW 0x01 MOVWF EEADRH ;load HIGH address MOVLW 0x00 ;load LOW address MOVWF EEADR BANKSEL ARRAY MOVLW ARRAY ; initialize FSR to start of data MOVWF FSR LOOP BANKSEL EEDATA MOVE INDF,W ; indirectly load EEDATA MOVWF EEDATA INCE ; increment data pointer FSR.F MOVF INDF,W ; indirectly load EEDATH MOVWF EEDATH INCF FSR, F ; increment data pointer BANKSEL EECON1 MOVIW 0x55 ;required sequence MOVWF EECON2 Required Sequence MOVLW 0xAA MOVWE EECON2 BSF EECON1,WR ;set WR bit to begin write NOP ; instructions here are ignored as processor NOP BANKSEL EEADR INCF EEADR, f ;load next word address BANKSEL word block DECFSZ word block, f ;have 4 words been written? GOTO loop ;NO, continue with writing BANKSEL EECON1 EECON1,WREN ;YES, 4 words complete, disable writes BCF BSF INTCON, GIE ;enable interrupts

3.8 Protection Against Spurious Write

There are conditions when the device should not write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents an EEPROM write.

The write initiate sequence and the WREN bit together, help prevent an accidental write during brown-out, power glitch, or software malfunction.

3.9 Operation During Code Protect

When the data EEPROM is code protected, the microcontroller can read and write to the EEPROM normally. However, all external access to the EEPROM is disabled. External write access to the program memory is also disabled.

When program memory is code protected, the microcontroller can read and write to program memory normally, as well as execute instructions. Writes by the device may be selectively inhibited to regions of the memory, depending on the setting of bits WRT1:WRT0 of the configuration word (see Section 15.1 for additional information). External access to the memory is also disabled.

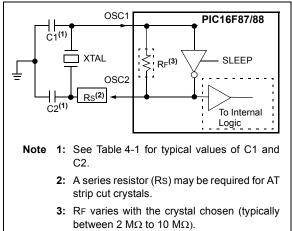
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
10Ch	EEDATA	EEPROM	1/FLASH	Data Regis	ster Low I	xxxx xxxx	uuuu uuuu				
10Dh	EEADR	EEPROM	1/FLASH		xxxx xxxx	uuuu uuuu					
10Eh	EEDATH	_	_	EEPROM	/FLASH [Data Regist	er High Byt	e		xx xxxx	uu uuuu
10Fh	EEADRH	—	-	-		—	EEPROM/ Register H	xxx	uuu		
18Ch	EECON1	EEPGD	—	—	FREE	WRERR	WREN	WR	RD	xx x000	xx q000
18Dh	EECON2	EEPRON	1 Control	Register2 (not a phy						
0Dh	PIR2	OSFIF	CMIF	_	EEIF	_	_	_	_	00-0	00-0
8Dh	PIE2	OSFIE	CMIE	_	EEIE	_	_	_	_	00-0	00-0

TABLE 3-1:REGISTERS/BITS ASSOCIATED WITH DATA EEPROM AND
FLASH PROGRAM MEMORIES

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by Data EEPROM or FLASH Program Memory.

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types


The PIC16F87/88 can be operated in eight different Oscillator modes. The user can program three configuration bits (FOSC2:FOSC0) to select one of these eight modes (modes 5 - 8 are new PIC16 oscillator configurations):

- 1. LP Low Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High Speed Crystal/Resonator
- 4. RC External Resistor/Capacitor with Fosc/4 output on RA6
- 5. RCIO External Resistor/Capacitor with I/O on RA6
- 6. INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- 7. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 8. ECIO External Clock with I/O on RA6

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKI and OSC2/CLKO pins to establish oscillation (see Figure 4-1 and Figure 4-2). The PIC16F87/88 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications.

FIGURE 4-1: CRYSTAL OPERATION (HS, XT, OR LP OSC CONFIGURATION)

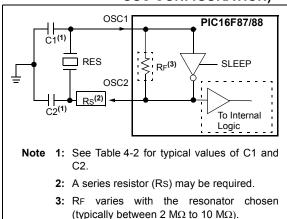
TABLE 4-1: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR (FOR DESIGN GUIDANCE ONLY)

Osc Type	Crystal Freq	Typical Capacitor Values Tested:			
	Fieq	C1	C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
XT	200 kHz	56 pF	56 pF		
	1 MHz	15 pF	15 pF		
	4 MHz	15 pF	15 pF		
HS	4 MHz	15 pF	15 pF		
	8 MHz	15 pF	15 pF		
	20 MHz	15 pF	15 pF		

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.


See the notes following this table for additional information.

- Note 1: Higher capacitance increases the stability of oscillator, but also increases the start-up time.
 - 2: Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

FIGURE 4-2:

OPERATION (HS OR XT OSC CONFIGURATION)

CERAMIC RESONATOR

TABLE 4-2: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

Typical Capacitor Values Used:								
Mode Freq OSC1 OSC2								
XT	455 kHz	56 pF	56 pF					
	2.0 MHz	47 pF	47 pF					
	4.0 MHz	33 pF	33 pF					
HS	8.0 MHz	27 pF	27 pF					
	16.0 MHz	22 pF	22 pF					

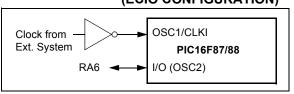
Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode, rather than XT mode, is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω .

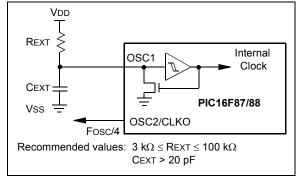

4.3 External Clock Input

The ECIO Oscillator mode requires an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset, or after an exit from SLEEP mode.

In the ECIO Oscillator mode, the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 4-3 shows the pin connections for the ECIO Oscillator mode.

FIGURE 4-3:

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)



4.4 RC Oscillator

For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal manufacturing variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillaton frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 4-4 shows how the R/C combination is connected.

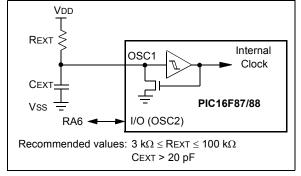

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic.

FIGURE 4-4: RC OSCILLATOR MODE

The RCIO Oscillator mode (Figure 4-5) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

FIGURE 4-5: RCIO OSCILLATOR MODE

4.5 Internal Oscillator Block

The PIC16F87/88 devices include an internal oscillator block, which generates two different clock signals; either can be used as the system's clock source. This can eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source, which can be used to directly drive the system clock. It also drives the INTOSC postscaler, which can provide a range of six clock frequencies from 125 kHz to 4 MHz.

The other clock source is the internal RC oscillator (INTRC), which provides a 31.25 kHz (32 μs nominal period) output. The INTRC oscillator is enabled by selecting the INTRC as the system clock source, or when any of the following are enabled:

- Power-up Timer
- Watchdog Timer
- Two-Speed Start-up
- · Fail-Safe Clock Monitor

These features are discussed in greater detail in Section 15.0 ("Special Features of the CPU").

The clock source frequency (INTOSC direct, INTRC direct, or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (page 41).

Note:	Throughout this data sheet, when referring <i>specifically</i> to a generic clock source, the term "INTRC" may also be used to refer to the Clock modes using the internal oscillator block. This is regardless of whether the actual frequency used is INTOSC (8 MHz)					
	actual frequency used is INTOSC (8 MHz),					
	the INTOSC postscaler, or INTRC					
	(31.25 kHz).					

4.5.1 INTRC MODES

Using the internal oscillator as the clock source can eliminate the need for up to two external oscillator pins, after which it can be used for digital I/O. Two distinct configurations are available:

- In INTIO1 mode, the OSC2 pin outputs Fosc/4, while OSC1 functions as RA7 for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and output.

4.5.2 OSCTUNE REGISTER

The internal oscillator's output has been calibrated at the factory, but can be adjusted in the application. This is done by writing to the OSCTUNE register (Register 4-1). The tuning sensitivity is constant throughout the tuning range. See Section 18.0 ("Electrical Characteristics") for further details.

When the OSCTUNE register is modified, the INTRC frequency will begin shifting to the new frequency. The INTRC clock will reach the new frequency within 8 clock cycles (approximately 8 * 32 μ s = 256 μ s). Code execution continues during this shift. There is no indication that the shift has occurred. Operation of features that depend on the 31.25 kHz INTRC clock source frequency, such as the WDT and peripherals, will also be affected by the change in frequency.

REGISTER 4-1: OSCTUNE: OSCILLATOR TUNING REGISTER

-n = Value at POR

EK 4-1.	USCIONE	. USCILL	ATOR TON		SIER								
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
		—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0					
	bit 7							bit 0					
bit 7-6	Unimplem	ented: Rea	d as '0'										
bit 5-0	TUN<5:0>: Frequency Tuning bits												
	011111 = 	Maximum fr	equency										
	011110 =												
	•												
	•												
	•	•											
		000001 = 000000 = Center frequency. Oscillator Module is running at the calibrated frequency.											
		Center frequ	lency. Oscili	ator Module	is running a	t the calibra	ted frequenc	;у.					
	111111 =												
	•												
	•												
	100000 = 	Minimum fre	equency										
	Legend:												
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'					

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

4.6 Clock Sources and Oscillator Switching

The PIC16F87/88 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low frequency clock source. PIC16F87/88 devices offer three alternate clock sources. When enabled, these give additional options for switching to the various Power Managed Operating modes.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- · Secondary oscillators
- Internal oscillator block (INTRC)

The **primary oscillators** include the external Crystal and Resonator modes, the external RC modes, the external Clock mode and the internal oscillator block. The particular mode is defined on POR by the contents of Configuration Word 1. The details of these modes are covered earlier in this chapter.

The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a Power Managed mode.

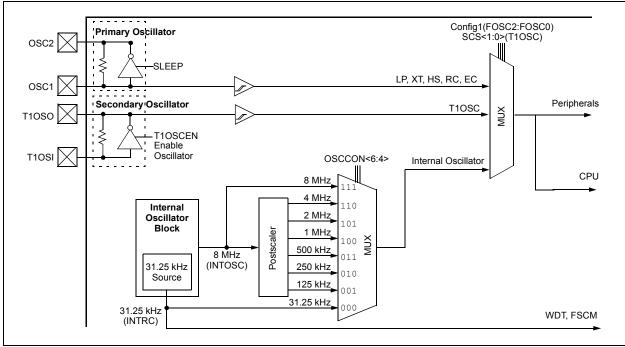
PIC16F87/88 devices offer only the Timer1 oscillator as a secondary oscillator. This oscillator continues to run when a SLEEP instruction is executed, and is often the time-base for functions, such as a real-time clock.

Most often, a 32.768 kHz watch crystal is connected between the RB6/T1OS0 and RB7/T1OSI pins. Like the LP mode oscillator circuit, loading capacitors are also connected from each pin to ground. The Timer1 oscillator is discussed in greater detail in Section 7.6.

In addition to being a primary clock source, the **internal oscillator block** is available as a Power Managed mode clock source. The 31.25 kHz INTRC source is also used as the clock source for several special features, such as the WDT, Fail-Safe Clock Monitor, Power-up Timer, and Two-Speed Start-up.

The clock sources for the PIC16F87/88 devices are shown in Figure 4-6. See Section 7.0 for further details of the Timer1 oscillator. See Section 15.1 for Configuration register details.

4.6.1 OSCILLATOR CONTROL REGISTER


The OSCCON register (Register 4-2) controls several aspects of the system clock's operation, both in full power operation and in Power Managed modes.

The System Clock Select bits, SCS1:SCS0, select the clock source that is used when the device is operating in Power Managed modes. When the bits are cleared (= 00), the system clock source comes from the main oscillator that is selected by the FOSC2:FOSC0 configuration bits in Configuration Register 1. When the bits are set in any other manner, the system clock source is provided by the Timer1 oscillator (SCS1:SCS0 = 01), or from the internal oscillator block (SCS1:SCS0 = 10). After a RESET, SCS<1:0> are always set to '00'.

The Internal Oscillator Select bits, IRCF2:IRCF0, select the frequency output of the internal oscillator block that is used to drive the system clock. The choices are the INTRC source (31.25 kHz), the INTOSC source (8 MHz), or one of the six frequencies derived from the INTOSC postscaler (125 kHz to 4 MHz). Changing the configuration of these bits has an immediate change on the internal oscillator's output.

The OSTS and IOFS bits indicate the status of the primary oscillator and INTOSC source; these bits are set when their respective oscillators are stable. In particular, OSTS indicates that the Oscillator Start-up Timer has timed out.

4.6.2 MODIFYING THE IRCF BITS

The IRCF bits can be modified at any time, regardless of which clock source is currently being used as the system clock. The internal oscillator allows users to change the frequency during RUN time. This is achieved by modifying the IRCF bits in the OSCCON register. The sequence of events that occur after the IRCF bits are modified is dependent upon the initial value of the IRCF bits before they are modified. The system clock, in either case, will switch to the new internal oscillator frequency after **eight** falling edges of the new clock. If the INTRC (31.25 kHz) is running and the IRCF bits are modified to any of the other high frequency values, a 1 ms clock switch delay is turned on. Code execution continues at a higher than expected frequency while the new frequency stabilizes. Time sensitive code should wait for the IOFS bit in the OSCCON register to become set before continuing. This bit can be monitored to ensure that the frequency is stable before using the system clock in time critical applications.

If the IRCF bits are modified while the internal oscillator is running at any other frequency than INTRC (31.25 kHz), there is no need for a 1 ms clock switch delay. The new INTOSC frequency will be stable immediately after the **eight** falling edges. The IOFS bit will remain set after clock switching occurs.

Caution must be taken when modifying the IRCF bits using BCF or BSF instructions. It is possible to modify the IRCF bits to a frequency that may be out of the VDD specification range; for example, VDD = 2.0V and IRCF = 111 (8 MHz).

4.6.3 CLOCK TRANSITION SEQUENCE WHEN THE IRCF BITS ARE MODIFIED

The following sequence is performed when the IRCF bits are changed and the system clock is the internal oscillator.

- 1. The IRCF bits are modified.
- The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
- 3. The clock switching circuitry then waits for **eight** falling edges of requested clock, after which it switches CLKO to this new clock source.
- 4. If the INTRC (31.25 kHz) is enabled, the IOFS bit is clear to indicate that the clock is unstable and a 1 ms delay is started. If the internal oscillator frequency is anything other than INTRC (31.25 kHz), this step is skipped. After the appropriate number of clock periods have passed, the IOFS bit is set to indicate to the internal oscillator that the frequency is stable.
- 5. Oscillator switch over is complete.

		U-0	R/W-0	R/W-0	R/W0	R-0	R-0	R-0	R-0
			IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0
		bit 7							bit 0
bit	7	Unimplem	ented: Read	as '0'					
bit	6-4	IRCF<2:0>	: Internal RC	Oscillator Fr	equency Sele	ect bits			
		000 = 31.2	5 kHz						
		001 = 125	kHz						
		010 = 250							
		011 = 500							
		100 = 1 MH							
		101 = 2 MH							
		111 = 8 MH							
bit	2	-		n Timo out C	tatua hit				
DIL	3		illator Start-u			olí			
			is running fro is running fro	•			evetor do	ck	
bit	2		SC Frequen			Secondary	System Clu	CK	
DI	2		•	cy Stable bit					
			ncy is stable ncy is not stal	hla					
bit	1-0		Oscillator Mo		ite				
DI	1-0								
			ator mode de C is used for	•					
			al RC is used	•					
		11 = Reser		for systems	SIOCIC				
		Logond							
		Legend:							

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

REGISTER 4-2: OSCCON: OSCILLATOR CONTROL REGISTER

R = Readable bit

-n = Value at POR

4.6.4 OSCILLATOR DELAY UPON POWER-UP AND WAKE-UP

The Oscillator Start-up Timer (OST) is used to ensure that a stable system clock is provided to the device. The OST is activated following a POR, or a wake-up from SLEEP mode, when the system clock is configured for one of the primary oscillator modes (LP, XT, and HS).

Table 4-3 shows examples where the oscillator delay is invoked.

Switch From	Switch To	Frequency	Oscillator Delay	Comments
SLEEP	INTRC T1OSC	31.25 kHz 32.768 kHz		
SLEEP	INTOSC	125 kHz - 8 MHz	5 μs - 10 μs (approx.)	Following a wake-up from SLEEP mode or POR, CPU start-up is invoked to allow the
INTRC/SLEEP	EC, RC	0 - 20 MHz	CPU Start-up ⁽¹⁾	CPU to become ready for code execution.
INTRC (31.25 kHz)	EC, RC	0 - 20 MHz		
SLEEP	LP, XT, HS	32.768 kHz - 20 MHz	1024 Clock Cycles (OST)	Following a change from INTRC, an OST of 1024 cycles must occur.
INTRC (31.25 kHz)	INTOSC	125 kHz - 8 MHz	1 ms	Refer to Section 4.6.2 for further details.

TABLE 4-3:OSCILLATOR DELAY EXAMPLES

Note 1: The 5 μ s - 10 μ s start-up delay is based on a 1 MHz System Clock.

4.6.5 CLOCK SWITCHING

Clock switching will occur for the following reasons:

- The FCMEN bit is set, the device is running from the primary oscillator, and the primary oscillator fails.
- The FCMEN bit is set, the device is running from the T10SC and T10SC fails.
- Following a wake-up due to a RESET or a POR, when the device is configured for Two-Speed mode, switching will occur between the INTRC and the system clock defined by the FOSC<2:0> bits.
- A wake-up from SLEEP occurs due to interrupt or WDT wake-up and Two-Speed Start-up is enabled. If the primary clock is XT, HS, or LP, the clock will switch between the INTRC and the primary system clock after 1024 clock (OST) and 8 clocks of the primary oscillator. This is conditional upon the SCS bits being set equal to '00'.
- Note: Because the SCS bits are cleared on any RESET, no clock switching will occur on a RESET unless the Two-Speed Start-up is enabled and the primary clock is XT, HS, or LP. The device will wait for the primary clock to become stable before execution begins (Two-Speed Start-up disabled).

4.6.6 CLOCK TRANSITION DELAYS

When a clock transition is requested, the CLKO signal will continue to provide the current clock at its output throughout the transition period. After this transition period, the requested clock will start to drive the CLKO signal. The transition delay comprises the time to detect clock source stability plus eight cycles (of the new clock). For internal RC oscillators, the transition delay is eight clocks. When the Primary oscillator is configured for any oscillator (LP, XT, or HS), the transition delay is 1024 plus eight clocks. When the primary oscillator is configured for an external clock, the transition delay is eight clocks.

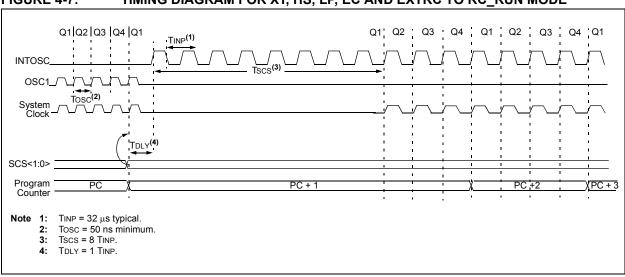
If an attempt is made to switch to the same clock source already in use, the clock transition sequence will not take place.

4.6.7 CLOCK TRANSITION AND THE WATCHDOG

When clock switching is performed, the Watchdog Timer is disabled because the Watchdog Ripple Counter is used as the Oscillator Start-up Timer.

Note:	The OST is only used when switching to
	XT, HS, and LP Oscillator modes.

Once the clock transition is complete (i.e., new oscillator selection switch has occurred), the Watchdog Counter is re-enabled with the Counter Reset. This allows the user to synchronize the Watchdog Timer to the start of execution at the new clock frequency.


4.7 Power Managed Modes

4.7.1 RC_RUN MODE

When SCS bits are configured to run from the INTRC, a clock transition is generated if the system clock is not already using the INTRC. The event will clear the OSTS bit, switch the system clock from the primary system clock (if SCS<1:0> = 00) determined by the value contained in the configuration bits, or from the T1OSC (if SCS<1:0> = 01) to the INTRC clock option, and shut down the primary system clock to conserve power. Clock switching will not occur if the primary system clock is already configured as INTRC.

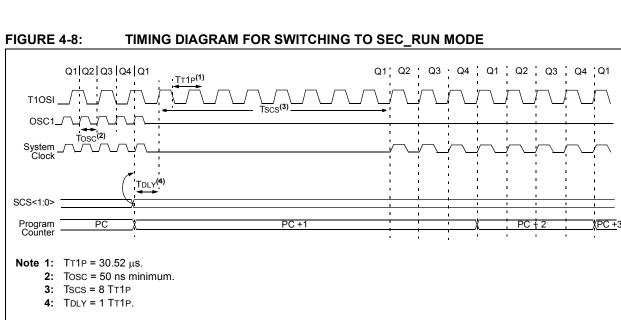
If the system clock does not come from the INTRC (31.25 kHz) when the SCS bits are changed, and the IRCF bits in the OSCCON register are configured for a frequency other than INTRC, the frequency may not be stable immediately. The IOFS bit (OSCCON<2>) will be set when the INTOSC or postscaler frequency is stable, after approximately 1 ms.

After a clock switch has been executed, the OSTS bit is cleared, indicating a Low Power mode, and the device does not run from the primary system clock. The internal Q clocks are held in the Q1 state until eight falling edge clocks are counted on the INTRC oscillator. After the eight clock periods have transpired, the clock input to the Q clocks is released and operation resumes (see Figure 4-7).

FIGURE 4-7: TIMING DIAGRAM FOR XT, HS, LP, EC AND EXTRC TO RC_RUN MODE

4.7.2 SEC_RUN MODE

The core and peripherals can be configured to be clocked by T1OSC using a 32.768 kHz crystal. The crystal must be connected to the T1OSO and T1OSI pins. This is the same configuration as the low power timer circuit (see Section 7.6). When SCS bits are configured to run from T1OSC, a clock transition is generated. It will clear the OSTS bit, switch the system clock from either the primary system clock, or INTRC, depending on the value of SCS<1:0> and FOSC<2:0>, to the external low power Timer1 oscillator input (T1OSC), and shut down the primary system clock to conserve power.


After a clock switch has been executed, the internal Q clocks are held in the Q1 state until eight falling edge clocks are counted on the T1OSC. After the eight clock periods have transpired, the clock input to the Q clocks is released and operation resumes (see Figure 4-8). In addition, T1RUN (In T1CON) is set to indicate that T1OSC is being used as the system clock.

Note 1:	The T1OSCEN bit must be enabled and it
	is the user's responsibility to ensure
	T1OSC is stable before clock switching to
	the T1OSC input clock can occur.

2: When T1OSCEN = 0, the following possible effects result.

Original SCS<1:0>	Modified SCS<1:0>	Final SCS<1:0>		
00	01	00 - no change		
00	11	10 - INTRC		
10	11	10 - no change		
10	01	00 - OSC		
		defined by		
		Fosc<2:0>		

A clock switching event will occur if the final state of the SCS bits is different from the original.

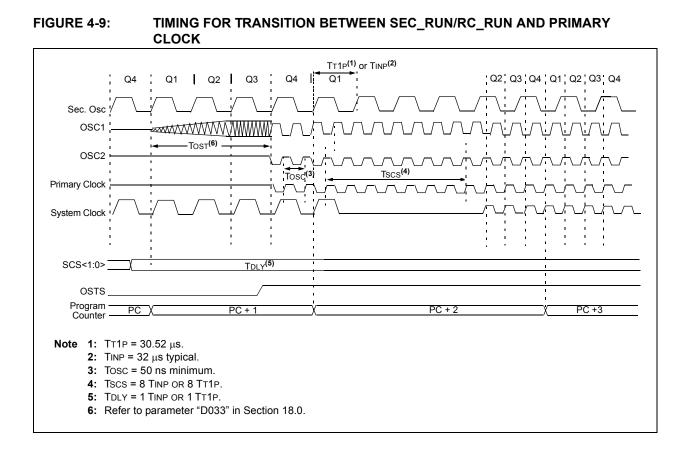
4.7.3 SEC_RUN/RC_RUN TO PRIMARY CLOCK SOURCE

When switching from a SEC_RUN or RC_RUN mode back to the primary system clock, following a change of SCS<1:0> to '00', the sequence of events that take place will depend upon the value of the FOSC bits in the Configuration register. If the external oscillator is configured as a crystal (HS, XT, or LP), then the transition will take place after 1024 clock cycles. This is necessary because the crystal oscillator had been powered down until the time of the transition. In order to provide the system with a reliable clock when the changeover has occurred, the clock will not be released to the changeover circuit until the 1024 count has expired.

During the Oscillator Start-up Time, the system clock comes from the current system clock. Instruction execution and/or peripheral operation continues using the currently selected oscillator as the CPU clock source, until the necessary clock count has expired to ensure that the primary system clock is stable.

- Note 1: When the device is configured to use T1OSC, the act of clearing the T1OSCEN bit in the T1CON register will cause SCS<0> to be cleared, which causes the SCS<1:0> bits to revert to '00' or '10', depending on what SCS<1> is. The T1OSCEN bit will be cleared immediately; however, T1OSC will be enabled and instruction execution will continue until the OST time-out for the main system clock is complete. At that time, the system clock will switch from the T1OSC to the primary clock or the INTRC. Following this, the T1 oscillator will be shut down.
 - 2: If it is desired not to run time critical application code while running from the secondary clock source, the OSTS bit should be monitored until the Oscillator Start-up Timer has completed. OSTS = 1 indicates that the Oscillator Start-up Timer has timed out and the system clock comes from the primary clock source.

Following the Oscillator Start-up Time, the internal Q clocks are held in the Q1 state until eight falling edge clocks are counted from the primary system clock. The clock input to the Q clocks is then released, and operation resumes with primary system clock determined by the FOSC bits (see Figure 4-10).


Note:	If the primary system clock is either RC or
	EC, an internal delay timer (5 - 10 µs) will
	suspend operation after exiting Secondary
	Clock mode to allow the CPU to become
	ready for code execution.

4.7.3.1 Returning to Primary Clock Source Sequence

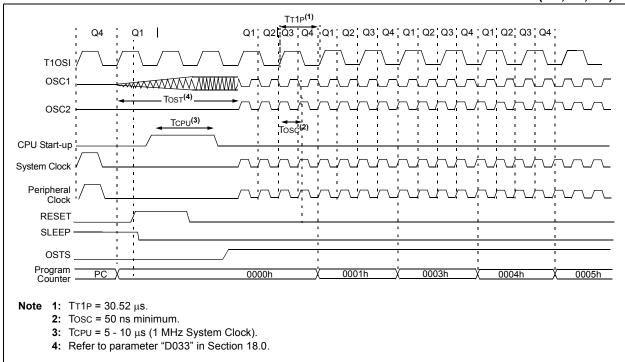
Changing back to the primary oscillator from SEC_RUN or RC_RUN can be accomplished by either changing SCS<1:0> to '00', or clearing the T1OSCEN bit in the T1CON register (if T1OSC was the secondary clock).

The sequence of events that follows is the same for both modes:

- If the primary system clock is configured as EC, RC, or INTRC, then the OST time-out is skipped. Skip to step 3.
- If the primary system clock is configured as an external oscillator (HS, XT, LP), then the OST will be active, waiting for 1024 clocks of the primary system clock.
- 3. On the following Q1, the device holds the system clock in Q1.
- 4. The device stays in Q1 while eight falling edges of the primary system clock are counted.
- 5. Once the eight counts transpire, the device begins to run from the primary oscillator.
- If the secondary clock was INTRC and the primary is not INTRC, the INTRC will be shut down to save current, providing that the INTRC is not being used for any other function, such as WDT, or Fail-Safe Clock Monitoring.
- If the secondary clock was T1OSC, the T1OSC will continue to run if T1OSCEN is still set, otherwise the T1 oscillator will be shut down.

4.7.3.2 Returning to Primary Oscillator with a RESET

A RESET will clear SCS<1:0> back to '00'. The sequence for starting the primary oscillator following a RESET is the same for all forms of RESET, including POR. There is no transition sequence from the secondary system clock to the primary system clock. Instead, the device will reset the state of the OSCCON register and default to the primary system clock. The sequence of events that take place after this will depend upon the value of the FOSC bits in the Configuration register. If the external oscillator is configured as a crystal (HS, XT, or LP), the CPU will be held in the Q1 state until 1024 clock cycles have transpired on the primary clock. This is necessary because the crystal oscillator had been powered down until the time of the transition.


During the Oscillator Start-up Time, the system clock does not come from the low power oscillator. Instruction execution and/or peripheral operation is suspended and the secondary, low power, oscillator is disabled.

Note:	If Two-Speed Clock Start-up mod	e is					
	enabled, the INTRC will act as the syste						
	clock until the OST timer has timed ou	Jt.					

If the primary system clock is either RC, EC, or INTRC, the CPU will begin operating on the first Q1 cycle following the wake-up event. This means that there is no Oscillator Start-up Time required because the primary clock is already stable; however, there is a delay between the wake-up event and the following Q2. An internal delay timer of 5 - 10 μ s will suspend operation after the RESET to allow the CPU to become ready for code execution. The CPU and peripheral clock will be held in the first Q1 following the exit from low power. The clocks will be released on the next falling edge of the input system clock. The CPU will advance the system clock into the Q2 state following two rising edges of the incoming clock on OSC1. The extra clock transition is required following a RESET to allow the system clock to synchronize to the asynchronous nature of the RESET source (see Figure 4-11).

The sequence of events is as follows:

- 1. A device RESET is asserted from one of many sources (WDT, BOR, MCLR, etc.).
- 2. The device resets and the CPU start-up timer is enabled if in SLEEP mode. The device is held in RESET until the CPU start-up time-out is complete.
- If the primary system clock is configured as an external oscillator (HS, XT, LP), then the OST will be active waiting for 1024 clocks of the primary system clock. While waiting for the OST, the device will be held in RESET. The OST and CPU start-up timers run in parallel.
- After both the CPU start-up and OST timers have timed out, the device will wait for one additional clock cycle and instruction execution will begin.

FIGURE 4-10: TIMING LP CLOCK TO PRIMARY SYSTEM CLOCK AFTER RESET (HS, XT, LP)

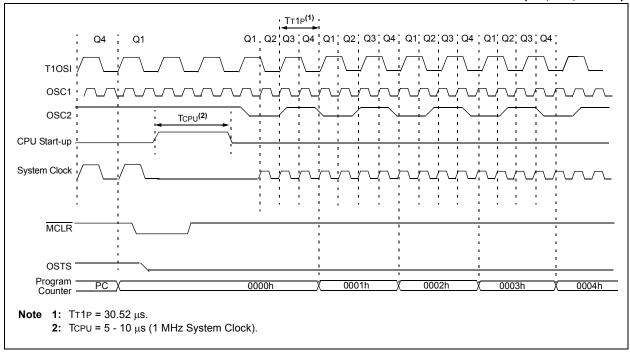


FIGURE 4-11: TIMING LP CLOCK TO PRIMARY SYSTEM CLOCK AFTER RESET (EC, RC, INTRC)

IADLE 4-4:							
Current System Clock	SCS bits <1:0> Modified to:	OSTS bit	Delay	IOFS bit	T1RUN bit	New System Clock	Comments
LP, XT, HS, T1OSC, EC, RC	10 (INTRC)	0	8 Clocks of INTRC	1	0	INTRC or INTOSC or INTOSC Postscaler	The internal RC oscillator frequency is dependant upon the IRCF bits.
LP, XT, HS, INTRC, EC, RC	01 (T1OSC)	0	8 Clocks of T1OSC	N/A	1	T1OSC	T1OSCEN bit must be enabled.
INTRC T1OSC	00 FOSC<2:0> = EC or FOSC<2:0> = RC	1	8 Clocks of EC or RC	N/A	0	EC or RC	
INTRC T1OSC	00 FOSC<2:0> = LP, XT, HS	0	1024 Clocks (OST) + 8 Clocks of LP, XT, HS	N/A	0	LP, XT, HS	During the 1024 clocks, program execution is clocked from the second- ary oscillator until the primary oscillator becomes stable.
LP, XT, HS	00 (Due to RESET) LP, XT, HS	1	1024 Clocks (OST)	N/A	0	LP, XT, HS	When a RESET occurs, there is no clock transition sequence. Instruction execution and/or peripheral opera- tion is suspended unless Two-Speed Start-up mode is enabled, after which the INTRC will act as the sys- tem clock until the OST timer has timed out.

TABLE 4-4: CLOCK SWITCHING MODES

4.7.4 EXITING SLEEP WITH AN INTERRUPT

Any interrupt, such as WDT or INT0, will cause the part to leave the SLEEP mode.

The SCS bits are unaffected by a SLEEP command and are the same before and after entering and leaving SLEEP. The clock source used after an exit from SLEEP is determined by the SCS bits.

4.7.4.1 Sequence of Events

If SCS<1:0> = 00:

- 1. The device is held in SLEEP until the CPU start-up time-out is complete.
- If the primary system clock is configured as an external oscillator (HS, XT, LP), then the OST will be active waiting for 1024 clocks of the primary system clock. While waiting for the OST, the device will be held in SLEEP unless Two-Speed Start-up is enabled. The OST and CPU start-up timers run in parallel. Refer to Section 15.12.4 for details on Two-Speed Start-up.
- 3. After both the CPU start-up and OST timers have timed out, the device will exit SLEEP and begin instruction execution with the primary clock defined by the FOSC bits.

If SCS<1:0> = 01 or 10:

- 1. The device is held in SLEEP until the CPU start-up time-out is complete.
- 2. After the CPU start-up timer has timed out, the device will exit SLEEP and begin instruction execution with the selected Oscillator mode.

If a user changes SCS<1:0> just before entering SLEEP mode, the system clock used when exiting SLEEP mode could be different than the system clock used when entering SLEEP mode.
As an example, if SCS<1:0> = 01 and T1OSC is the system clock, and the follow- ing instructions are executed:
BCF OSCON, SCS0
SLEEP
then a clock change event is executed. If the primary oscillator is XS, LP, or HS, the core will continue to run off T1OSC and execute the SLEEP command.

When SLEEP is exited, the part will resume operation with the primary oscillator after the start-up.

NOTES:

5.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range Reference Manual (DS33023).

5.1 PORTA and the TRISA Register

PORTA is a 8-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On	а	Power-c	on Reset,	the	e pins
	POR	TA<	:4:0> are	configured	as	analog
	input	ts ar				

Reading the PORTA register, reads the status of the pins, whereas writing to it, will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input and with analog input to become the RA4/AN4/ T0CKI/C2OUT pin. The RA4/AN4/T0CKI/C2OUT pin is a Schmitt Trigger input and full CMOS output driver.

Pin RA5 is multiplexed with the Master Clear module input. The RA5/MCLR/VPP pin is a Schmitt Trigger input.

Pin RA6 is multiplexed with the oscillator module input and external oscillator output. Pin RA7 is multiplexed with the oscillator module input and external oscillator input. Pin RA6/OSC2/CLKO and pin RA7/OSC1/CLKI are Schmitt Trigger inputs and full CMOS output drivers.

Pins RA<1:0> are multiplexed with analog inputs. Pins RA<3:2> are multiplexed with analog inputs, comparator outputs, and VREF inputs. Pins RA<3:0> have TTL inputs and full CMOS output drivers.

EXAMPLE 5-1: INITIALIZING PORTA

BANKSEL		'	select bank of PORTA
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
BANKSEL	ADCON1	;	Select Bank of ADCON1
MOVLW	0x06	;	Configure all pins
MOVWF	ADCON1	;	as digital inputs
MOVLW	OxFF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<7:0> as inputs

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/CVREF/VREF- ⁽²⁾	bit 2	TTL	Input/output or analog input or VREF- or Comparator VREF output.
RA3/AN3/VREF+ ⁽²⁾ /C1OUT	bit 3	TTL	Input/output or analog input or VREF+ or Comparator output.
RA4/AN4 ⁽²⁾ /T0CKI/C2OUT	bit 4	ST	Input/output, analog input or TMR0 external input or Comparator output.
RA5/MCLR/VPP	bit 5	ST	Input, Master Clear (Reset) or Programming voltage input.
RA6/OSC2/CLKO	bit 6	ST	Input/output, connects to Crystal or Resonator, Oscillator output or 1/4 the frequency of OSC1, and denotes the instruction cycle in RC mode.
RA7/OSC1/CLKI	bit 7	ST/CMOS ⁽¹⁾	Input/output, connects to Crystal or Resonator or Oscillator input.

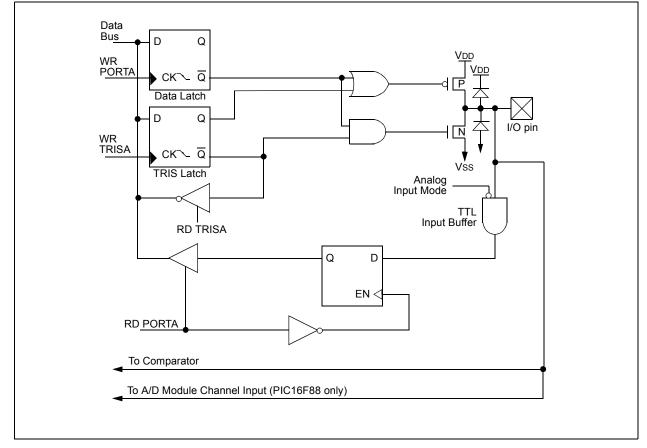
TABLE 5-1: PORTA FUNCTIONS

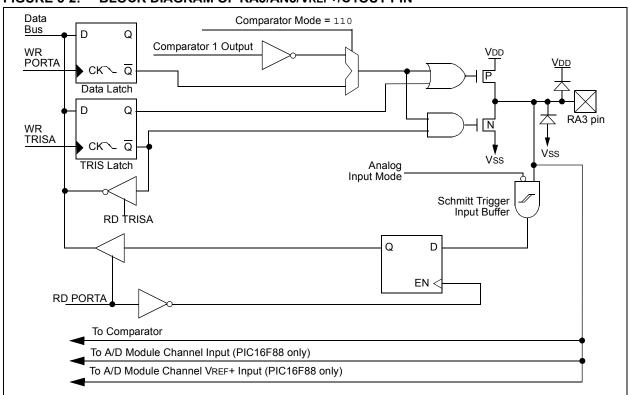
Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.2: PIC16F88 only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000(1) xxx0 0000(2)	
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽³⁾	PORTA Data Direction Register			1111 1111	1111 1111		
9Fh	ADCON1	ADFM	ADCS2	VCFG1	VCFG0	_	_			0000	0000

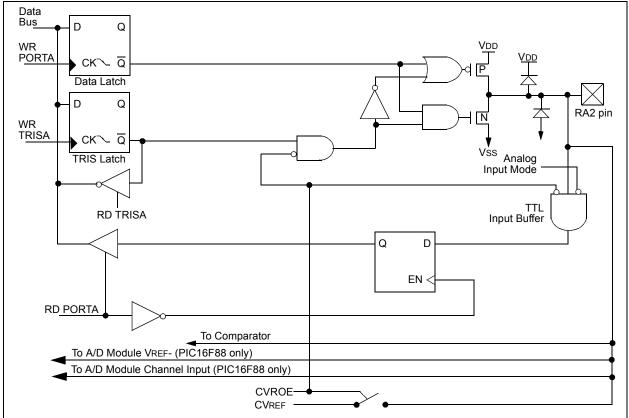
TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

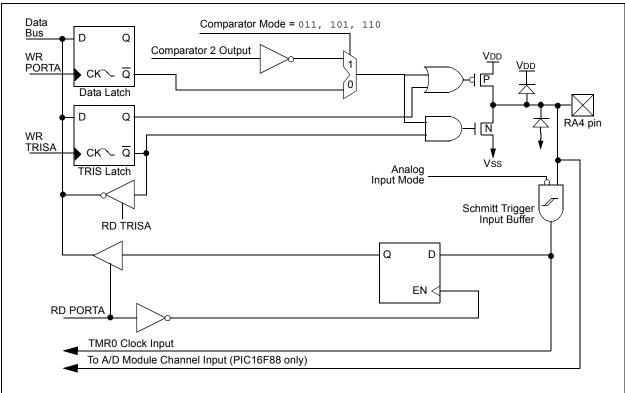

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.


Note 1: This value applies only to the PIC16F87.

2: This value applies only to the PIC16F88.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.


FIGURE 5-1: BLOCK DIAGRAM OF RA0/AN0:RA1/AN1 PINS



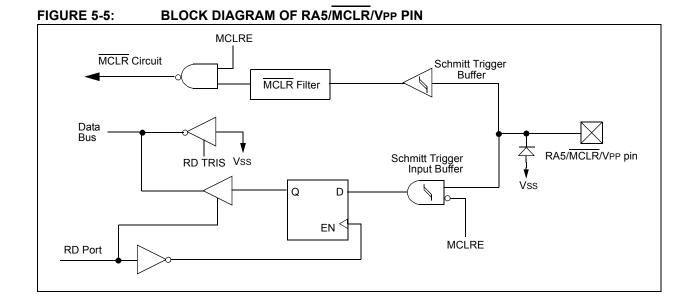


FIGURE 5-4: BLOCK DIAGRAM OF RA4/T0CKI/C2OUT PIN

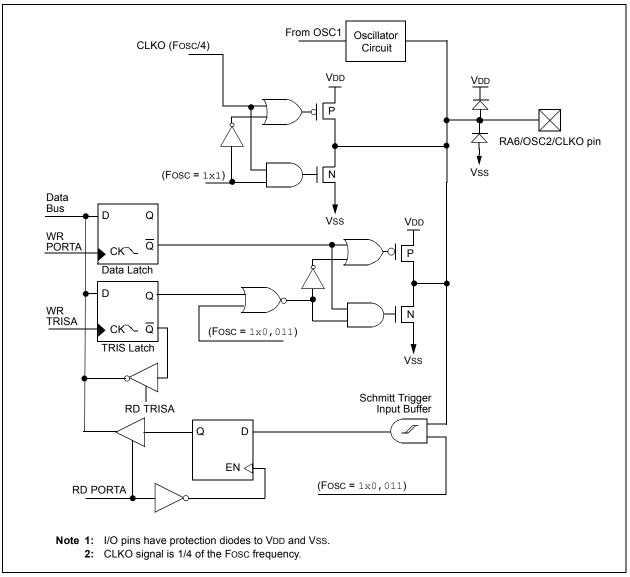
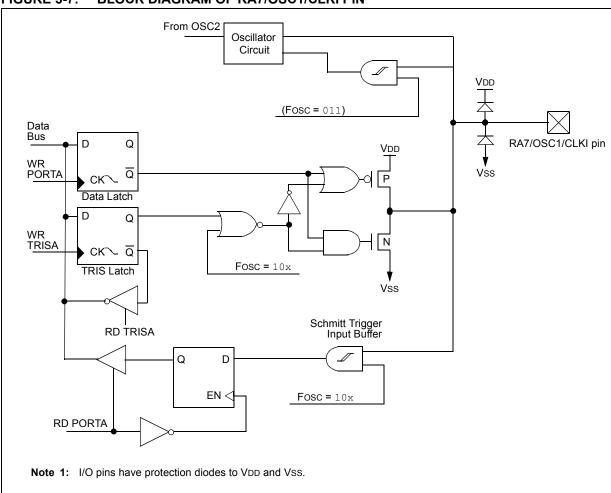



FIGURE 5-6: BLOCK DIAGRAM OF RA6/OSC2/CLKO PIN

FIGURE 5-7: BLOCK DIAGRAM OF RA7/OSC1/CLKI PIN

5.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'd together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION<6>).

PORTB is multiplexed with several peripheral functions (see Table 5-3). PORTB pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTB pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISB as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

TABLE 5-3:	PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT/CCP1	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Capture input/Compare output/PWM output pin. Internal software programmable weak pull-up.
RB1/SDI/SDA	bit 1	TTL/ST ⁽⁵⁾	Input/output pin, SPI Data input pin or I ² C Data I/O pin. Internal software programmable weak pull-up.
RB2/SDO/RX/DT	bit 2	TTL/ST ⁽⁴⁾	Input/output pin, SPI Data output pin. USART Asynchronous Receive or Synchronous Data. Internal software programmable weak pull-up.
RB3/CCP1/PGM ⁽³⁾	bit 3	TTL/ST ⁽²⁾	Input/output pin, Capture input/Compare output/PWM output pin or programming in LVP mode. Internal software programmable weak pull-up.
RB4/SCK/SCL	bit 4	TTL/ST ⁽⁵⁾	Input/output pin or SPI and I ² C clock pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5/SS/TX/CK	bit 5	TTL	Input/output pin or SPI Slave select pin (with interrupt-on-change). USART Asynchronous Transmit or Synchronous Clock. Internal software programmable weak pull-up.
RB6/PGC/T1OSO/ T1CKI/AN5	bit 6	TTL/ST ⁽²⁾	Input/output pin, Analog input ⁽⁶⁾ , Timer1 Oscillator output pin, Timer1 Clock input pin or Serial Programming Clock (with interrupt-on- change). Internal software programmable weak pull-up.
RB7/PGD/T1OSI/AN6	bit 7	TTL/ST ⁽²⁾	Input/output pin, Analog input ⁽⁶⁾ , Timer1 Oscillator input pin or Serial Programming Data (with interrupt-on-change). Internal software programmable weak pull-up.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 18-pin mid-range devices.

4: This buffer is a Schmitt Trigger input when configured for CCP or SSP mode.

5: This buffer is a Schmitt Trigger input when configured for SPI or I²C mode.

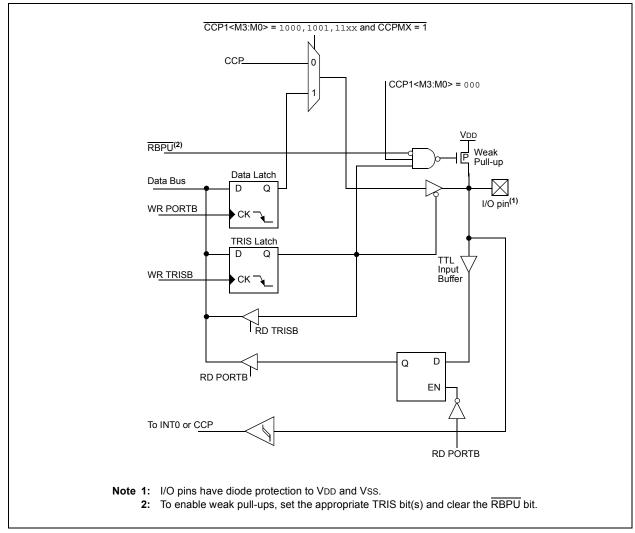
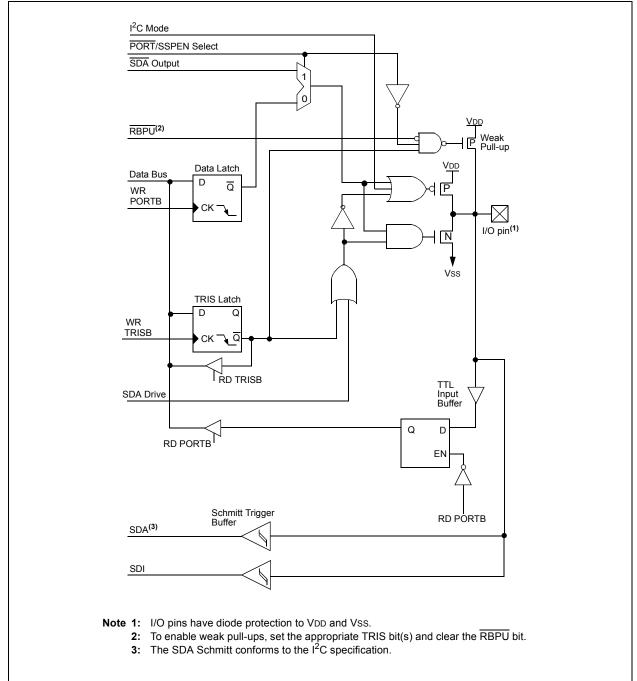
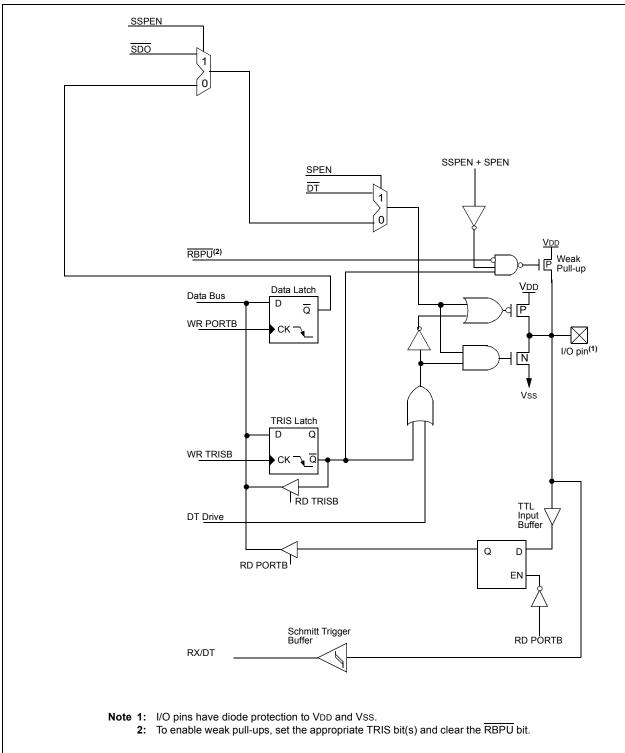
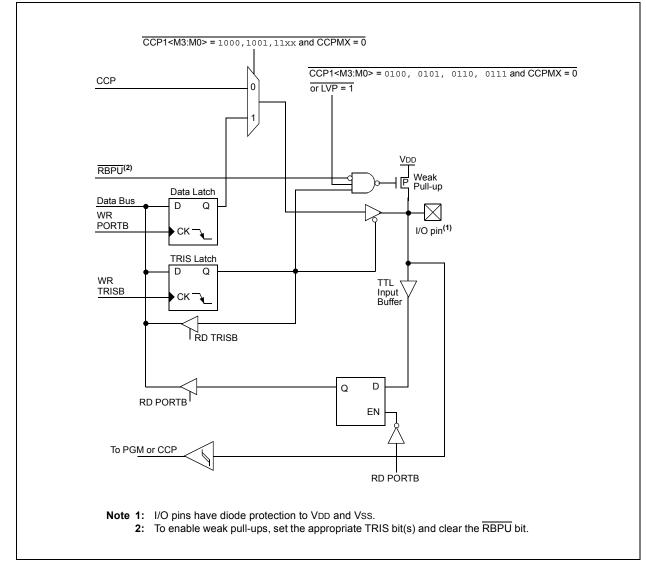

6: PIC16F88 only.

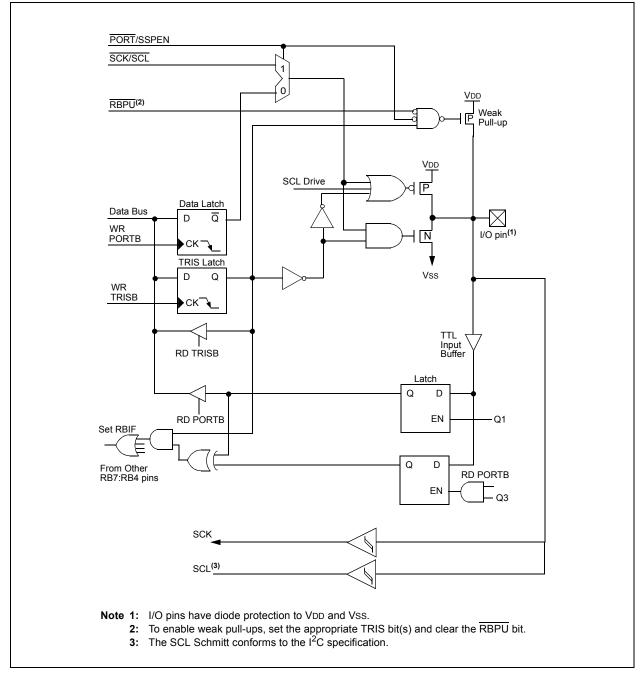
TABLE 5-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
------------	--

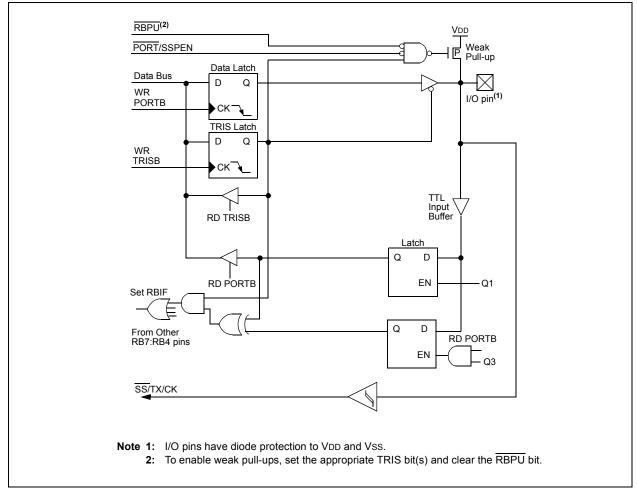

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

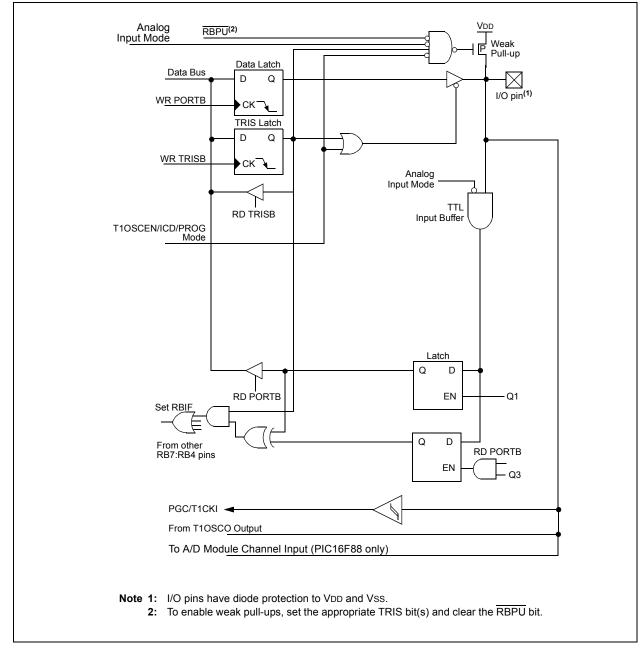
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.








FIGURE 5-11: BLOCK DIAGRAM OF RB3 PIN



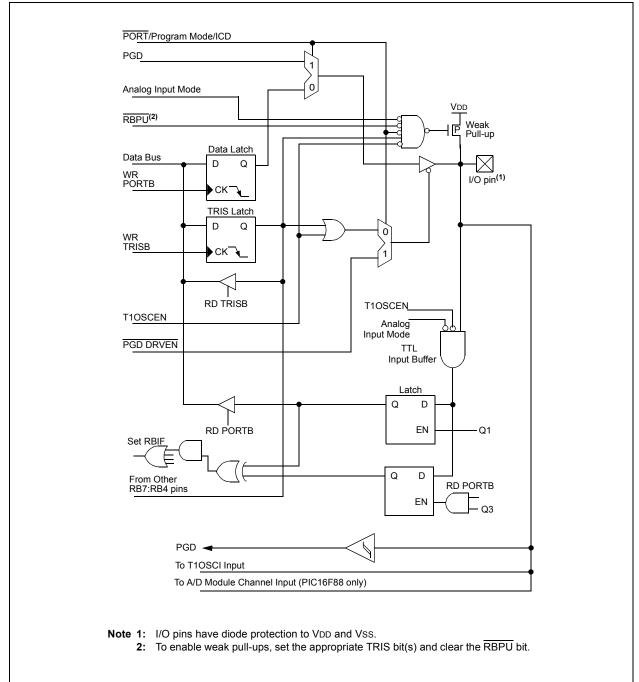

FIGURE 5-13: BLOCK DIAGRAM OF RB5 PIN

FIGURE 5-14: BLOCK DIAGRAM OF RB6 PIN

FIGURE 5-15: BLOCK DIAGRAM OF RB7 PIN

6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

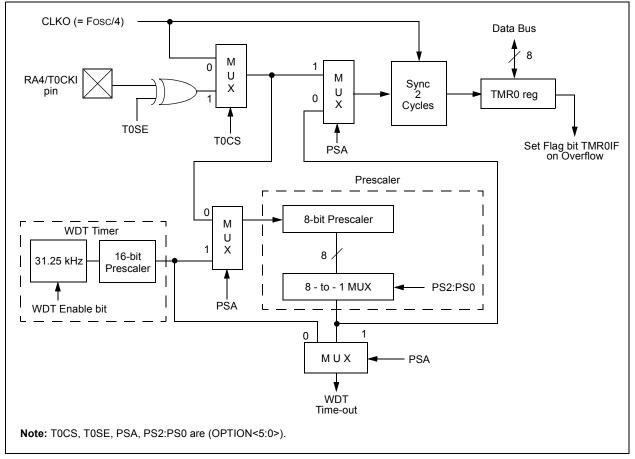
Additional information on the Timer0 module is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

Figure 6-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

6.1 Timer0 Operation

Timer0 operation is controlled through the OPTION register (see Register 2-2). Timer mode is selected by clearing bit T0CS (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the

increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting bit T0CS (OPTION<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.3.

The prescaler is mutually, exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. Section 6.4 details the operation of the prescaler.

6.2 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit TMR0IF (INTCON<2>). The interrupt can be masked by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

6.3 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for TOCKI to be high for at least 2 Tosc (and a small RC delay of 20 ns) and low for at least 2 Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

6.4 Prescaler

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the Timer0 module means that the prescaler cannot be used by the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 6-1).

REGISTER 6-1: **OPTION_REG REGISTER**

Note: Although the prescaler can be assigned to either the WDT or Timer0, but not both, a new divide counter is implemented in the WDT circuit to give multiple WDT time-out selection. This allows TMR0 and WDT to each have their own scaler. Refer to Section 15.12 for further details.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0, will clear the prescaler
	count but will not change the prescaler
	assignment.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0				
	bit 7							bit 0				
bit 7	RBPU											
bit 6	INTEDG											
bit 5		OCS: TMR0 Clock Source Select bit										
bit o	1 = Transi	tion on TOCk al instruction	(I pin									
bit 4	T0SE : TM 1 = Increm	R0 Source E nent on high- nent on low-te	dge Select to-low trans	bit sition on TO(
bit 3	1 = Presca	caler Assign aler is assign aler is assign	ed to the W		le							
bit 2-0	PS<2:0>:	Prescaler Ra	ate Select b	its								
	Bit Value	TMR0 Rate	WDT Rat	е								
	000 001 010 011 100 101 110 111	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128									
	Legend:											
	R = Reada	able bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as ')')				
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown				
	Note: To avoid an unintended device RESET, the instruction sequence shown in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.											

EXAMPLE 6-1: CHANGING THE PRESCALER ASSIGNMENT FROM WDT TO TIMER0

CLRWDT		;
BANKSEL	OPTION	;
MOVLW	b'xxxx0xxx'	;
MOVWF	OPTION	;

; Clear WDT and prescaler ; Select Bank of OPTION ; Select TMR0, new prescale ; value and clock source

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
01h,101h	TMR0	Timer0 Mo	imer0 Module Register								սսսս սսսս
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L), which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

The Timer1 oscillator can be used as a secondary clock source in Low Power modes. When the T1RUN bit is set, the Timer1 oscillator is providing the system clock. If the Fail-Safe Clock Monitor is enabled, and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components or code overhead.

7.1 Timer1 Operation

Timer1 can operate in one of three modes:

- as a Timer
- · as a Synchronous Counter
- as an Asynchronous Counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP1 module as the special event trigger (see Section 9.1). Register 7-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RB6/T1OSO/T1CKI/PGC and RB7/T1OSI/ PGD pins become inputs. That is, the TRISB<7:6> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

STER 7-1:	T1CON: T	T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)									
	U-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N			
	bit 7							bit 0			
bit 7	Unimplem	ented: Rea	d as '0'								
bit 6	1 = Systen	T1RUN : Timer1 System Clock Status bit 1 = System clock is derived from Timer1 oscillator 0 = System clock is derived from another source									
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value										
bit 3	1 = Oscilla	T1OSCEN: Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain)									
bit 2	<u>TMR1CS =</u> 1 = Do not 0 = Synchr <u>TMR1CS =</u>	<u>= 1:</u> synchronize onize extern <u>= 0:</u>	e external clo nal clock inpu								
bit 1	1 = Extern		-	lect bit OSO/T1CKI/	PGC (on the	rising edge	e)				
bit 0	TMR1ON: 1 = Enable 0 = Stops		bit								
	Legend:										
	R = Reada	ble bit	W = W	/ritable bit	U = Unimp	lemented b	oit, read as '	0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is o	cleared	x = Bit is u	nknown			

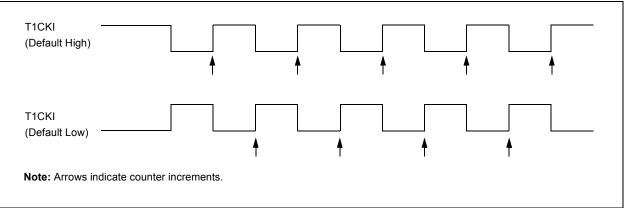
REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

7.2 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect, since the internal clock is always in sync.

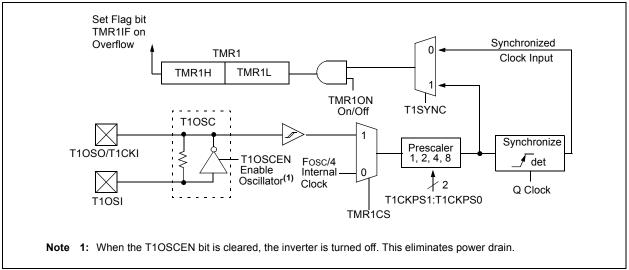
7.3 Timer1 Counter Operation

Timer1 may operate in Asynchronous or Synchronous mode, depending on the setting of the TMR1CS bit.


When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

7.4 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RB7/T1OSI/PGD, when bit T1OSCEN is set, or on pin RB6/T1OSO/T1CKI/PGC, when bit T1OSCEN is cleared.


If $\overline{T1SYNC}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

© 2002 Microchip Technology Inc.

7.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow that will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.5.1).

In Asynchronous Counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

7.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

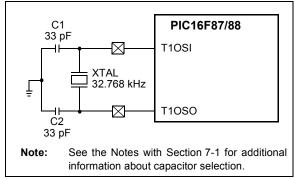
For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. The example codes provided in Example 7-1 and Example 7-2 demonstrate how to write to and read Timer1 while it is running in Asynchronous mode.

EXAMPLE 7-1: WRITING A 16-BIT FREE-RUNNING TIMER

; All interrupts	are disabled
CLRF TMR1L	; Clear Low byte, Ensures no rollover into TMR1H
MOVLW HI_BYTE	; Value to load into TMR1H
MOVWF TMR1H, F	; Write High byte
MOVLW LO_BYTE	; Value to load into TMR1L
MOVWF TMR1H, F	; Write Low byte
; Re-enable the 1	nterrupt (if required)
CONTINUE	; Continue with your code

EXAMPLE 7-2: READING A 16-BIT FREE-RUNNING TIMER


```
; All interrupts are disabled
MOVF
     TMR1H, W ; Read high byte
MOVWF TMPH
MOVF TMR1L, W ; Read low byte
MOVWF TMPL
MOVF TMR1H, W ; Read high byte
SUBWF TMPH, W ; Sub 1st read with 2nd read
                ; Is result = 0
BTFSC STATUS,Z
GOTO
      CONTINUE
                ; Good 16-bit read
; TMR1L may have rolled over between the read of the high and low bytes.
; Reading the high and low bytes now will read a good value.
MOVF TMR1H, W
                ; Read high byte
MOVWF TMPH
MOVF TMR1L, W ; Read low byte
MOVWE TMPL
                ; Re-enable the Interrupt (if required)
CONTINUE
                 ; Continue with your code
```

7.6 Timer1 Oscillator

A crystal oscillator circuit is built between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 32.768 kHz. It will continue to run during all Power Managed modes. It is primarily intended for a 32 kHz crystal. The circuit for a typical LP oscillator is shown in Figure 7-3. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

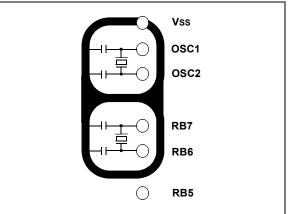
The user must provide a software time delay to ensure proper oscillator start-up.

FIGURE 7-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2		
LP	32 kHz	33 pF	33 pF		

- **Note 1:** Microchip suggests this value as a starting point in validating the oscillator circuit.
 - 2: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.


7.7 Timer1 Oscillator Layout Considerations

The Timer1 oscillator circuit draws very little power during operation. Due to the low power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 7-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high speed circuit must be located near the oscillator, a grounded guard ring around the oscillator circuit, as shown in Figure 7-4, may be helpful when used on a single sided PCB, or in addition to a ground plane.

7.8 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" signal (CCP1M3:CCP1M0 = 1011), the signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The specia	al even	t trigg	ers from tl	he CC	CP1			
	module v	vill not	set	interrupt	flag	bit			
	TMR1IF (F	TMR1IF (PIR1<0>).							

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

7.9 Resetting Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

7.10 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

7.11 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in Section 7.6, above), gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time-base, and several lines of application code to calculate the time. When operating in SLEEP mode and using a battery or super capacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 7-3, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16-bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it; the simplest method is to set the MSbit of TMR1H with a BSF instruction. Note that the TMR1L register is never pre-loaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode, and the Timer1 Overflow Interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

	•••••••			
RTCinit	banksel	TMR1H		
	movlw	0x80	;	Preload TMR1 register pair
	movwf	TMR1H	;	for 1 second overflow
	clrf	TMR1L		
	movlw	b'00001111'	;	Configure for external clock,
	movwf	T1CON	;	Asynchronous operation, external oscillator
	clrf	secs	;	Initialize timekeeping registers
	clrf	mins		
	movlw	.12		
	movwf	hours		
	banksel	PIE1		
	bsf	PIE1, TMR1IE	;	Enable Timer1 interrupt
	return			
RTCisr	banksel	TMR1H		
	bsf	TMR1H,7	;	Preload for 1 sec overflow
	bcf	PIR1,TMR1IF	;	Clear interrupt flag
	incf	secs,F	;	Increment seconds
	movf	secs,w		
	sublw	.60		
	btfss	STATUS,Z	;	60 seconds elapsed?
	return		;	No, done
	clrf	seconds	;	Clear seconds
	incf	mins,f	;	Increment minutes
	movf	mins,w		
	sublw	.60		
	btfss	STATUS,Z	;	60 seconds elapsed?
	return		;	No, done
	clrf	mins	;	Clear minutes
	incf	hours,f	;	Increment hours
	movf	hours,w		
	sublw	.24		
	btfss	STATUS,Z	;	24 hours elapsed?
	return		;	No, done
	clrf	hours	;	Clear hours
	return		;	Done

EXAMPLE 7-3: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	all c	e on other ETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
0Eh	TMR1L	Holdin	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							XXXX	XXXX	uuuu	uuuu
0Fh	TMR1H	Holdin	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu										
10h	T1CON	_	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000	0000	-uuu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

NOTES:

8.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for the PWM mode of the CCP1 module. The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF (PIR1<1>)).

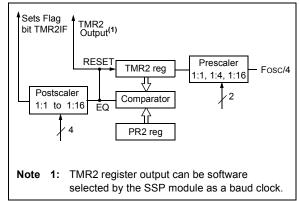
Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 8-1 shows the Timer2 control register.

Additional information on timer modules is available in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

8.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:


- A write to the TMR2 register
- A write to the T2CON register
- Any device RESET (Power-on Reset, MCLR, WDT Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

8.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate a shift clock.

FIGURE 8-1: TIMER2 BLOCK DIAGRAM

REGISTER 8-1:	T2CON:	TIMER2 C	ONTROL R	EGISTER (A	ADDRESS	12h)				
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	— TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CH								
	bit 7							bit 0		
bit 7	Unimple	nented: Rea	ad as '0'							
bit 6-3	TOUTPS	TOUTPS<3:0>: Timer2 Output Postscale Select bits								
		1 Postscale								
		2 Postscale								
	•	3 Postscale								
	•									
	•									
		16 Postscale	-							
bit 2		: Timer2 On	bit							
	1 = Time 0 = Time									
bit 1-0			2 Clock Pres	cale Select b	nits					
bit i o		scaler is 1	2 010011100		/10					
	01 = Prescaler is 4									
	1x = Pre	scaler is 16								
	Legend]		
	Legend: R = Read	lahla hit	M = 1	Vritable bit	II = I Inim	Inlemented	bit, read as	' Ω'		

TABLE 8-1:	REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER
TADLL 0-1.	REGISTERS ASSOCIATED WITH HIMLERZAS A HIMLER/COUNTER

- n = Value at POR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,		all c	e on other SETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
11h	TMR2	Timer	imer2 Module Register								0000	0000	0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer	2 Period Re	egister						1111	1111	1111	1111

'1' = Bit is set

'0' = Bit is cleared

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

x = Bit is unknown

9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM (CCP) module contains a 16-bit register that can operate as a:

- 16-bit capture register
- 16-bit compare register
- PWM master/slave duty cycle register.

Table 9-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match which will reset Timer1 and start an A/D conversion (if the A/D module is enabled). The CCP module's input/output pin (CCP1) can be configured as RB0 or RB3. This selection is set in bit 12 (CCPMX) of the configuration word.

Additional information on the CCP module is available in the PICmicro[™] Mid-Range MCU Reference Manual, (DS33023) and in Application Note AN594, "*Using the CCP Modules*" (DS00594).

TABLE 9-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 9-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0					
	bit 7							bit 0					
bit 7-6	Unimplem	ented: Rea	d as '0'										
bit 5-4	CCP1X:CO	CP1Y: PWM	l Least Signif	icant bits									
	Capture m	ode:											
	Unused												
	Compare r	<u>node:</u>											
	Unused												
	<u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.												
	These bits	are the two	LSbs of the	PWM duty cyc	le. The eigh	t MSbs are	found in CC	PRxL.					
bit 3-0	CCP1M<3:0>: CCP1 Mode Select bits												
	0000 = Capture/Compare/PWM disabled (resets CCP1 module)												
	0100 = Ca	apture mode	e, every falling	g edge		,							
	0101 = Ca	apture mode	e, every rising	edge									
			e, every 4th ri	0 0									
			e, every 16th										
	1000 = Compare mode, set output on match (CCP1IF bit is set)												
	1001 = Compare mode, clear output on match (CCP1IF bit is set)												
	1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set,												
	CCP1 pin is unaffected)												
	1011 = Compare mode, trigger special event (CCP1IF bit is set, CCP1 pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)												
	11xx = PWM mode												
	1127 - I V												
	Legend:												
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimp	plemented b	oit, read as '	0'					

- n = Value at POR

'1' = Bit is set

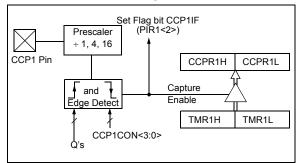
'0' = Bit is cleared

x = Bit is unknown

9.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on CCP1 pin. An event is defined as:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- · Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

9.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the TRISB<x> bit.

- **Note 1:** If the CCP1 pin is configured as an output, a write to the port can cause a capture condition.
 - 2: The TRISB bit (0 or 3) is dependent upon the setting of configuration bit 12 (CCPMX).

FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

9.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

9.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in Operating mode.

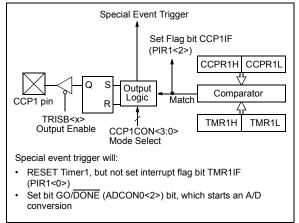
9.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		;value


9.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCP1 pin is:

- Driven High
- Driven Low
- Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 9-2: COMPARE MODE OPERATION BLOCK DIAGRAM

9.2.1 CCP PIN CONFIGURATION

The user must configure the CCP1 pin as an output by clearing the TRISB<x> bit.

- Note 1: Clearing the CCP1CON register will force the CCP1 compare output latch to the default low level. This is not the data latch.
 - 2: The TRISB bit (0 or 3) is dependent upon the setting of configuration bit 12 (CCPMX).

9.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

9.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

9.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated that may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled). This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

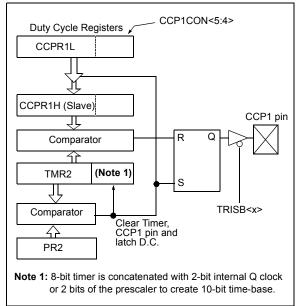
Note: The special event trigger from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 9-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	Value on all other RESETS	
0Bh,8Bh 10BH,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
86h	TRISB	PORT	PORTB Data Direction Register									1111	1111
0Eh	TMR1L	Holdin	g Registe	er for the Le	east Signific	ant Byte of	the 16-bit	TMR1 Reg	gister	XXXX	XXXX	uuuu	uuuu
0Fh	TMR1H	Holdin	g Registe	er for the M	ost Signific	ant Byte of t	the 16-bit 1	FMR1 Reg	ister	XXXX	XXXX	uuuu	uuuu
10h	T1CON	_	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000	0000	-uuu	uuuu
15h	CCPR1L	Captu	Capture/Compare/PWM Register1 (LSB)								XXXX	uuuu	uuuu
16h	CCPR1H	Captu	Capture/Compare/PWM Register1 (MSB)								XXXX	uuuu	uuuu
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

9.3 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISB<x> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force the CCP1 PWM output latch to the default
	low level. This is not the PORTB I/O data latch.

Figure 9-3 shows a simplified block diagram of the CCP module in PWM mode.

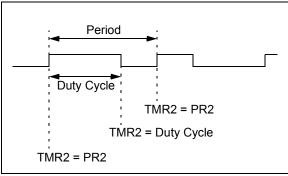

For a step by step procedure on how to setup the CCP module for PWM operation, see Section 9.3.3.

FIGURE 9-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 9-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 9-4: PWM OUTPUT

9.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula.

EQUATION 9-1:

 $PWM period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 prescale value)$

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 8.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PMM output
	frequency than the PWM output.

9.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time.

EQUATION 9-2:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following formula.

EQUATION 9-3:

Resolution =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

9.3.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISB<x> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.
 - Note: The TRISB bit (0 or 3) is dependant upon the setting of configuration bit 12 (CCPMX).

TABLE 9-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 9-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	all o	ie on other SETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1		ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
86h	TRISB	POR	PORTB Data Direction Register									1111	1111
11h	TMR2	Timer	2 Module Re	egister						0000	0000	0000	0000
92h	PR2	Timer	2 Module Pe	eriod Registe	er					1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Captu	Capture/Compare/PWM Register1 (LSB)									uuuu	uuuu
16h	CCPR1H	Captu	Capture/Compare/PWM Register1 (MSB)									uuuu	uuuu
17h	CCP1CON			CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

NOTES:

10.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

10.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

An overview of I²C operations and additional information on the SSP module can be found in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

Refer to Application Note AN578, "Use of the SSP Module in the I²C Multi-Master Environment" (DS00578).

10.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RB2/SDO/RX/DT
- Serial Data In (SDI)
 RB1/SDI/SDA
- Serial Clock (SCK)
 RB4/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

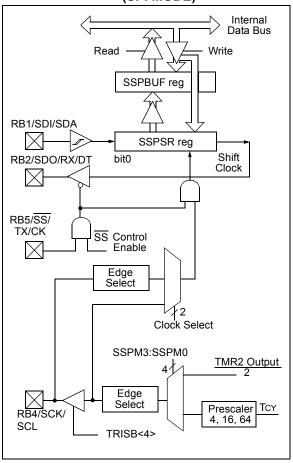
Slave Select (SS)
 RB5/SS/TX/CK

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and the SSPSTAT register (SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (IDLE state of SCK)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
	SMP	CKE	D/A	Р	S	R/W	UA	BF				
	bit 7	11		1	1		1	bit 0				
bit 7	SMP: SPI D	Data Input Sar	nple Phase	bit								
	<u>SPI Master mode</u> : 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time (Microwire [®])											
	<u>SPI Slave mode</u> : This bit must be cleared when SPI is used in Slave mode <u>I²C mode</u> : This bit must be maintained clear											
bit 6												
DILO	SPI mode, (CKP = 0										
		ansmitted on r	ising edge	of SCK (Micro	wire alternat	e)						
		ansmitted on f				,						
	<u>SPI mode, (</u>											
	1 = Data transmitted on falling edge of SCK (Microwire alternate)											
	0 = Data transmitted on rising edge of SCK											
	<u>I²C mode</u> : This bit must be maintained clear											
bit 5	D/\overline{A} : Data/Address bit (I ² C mode only)											
	In I ² C Slave		t byte receiv	ved was data	ess							
bit 4	1 = Indicate	t ⁽¹⁾ (I ² C mode es that a STO bit was not de	P bit has be	en detected	ast							
bit 3	1 = Indicate	bit ⁽¹⁾ (I ² C mod es that a STAI bit was not d	RT bit has b		last (this bit	is '0' on RE	SET)					
bit 2	Holds the R	/Write Informa /W bit informa START bit, ST	tion followir	ng the last add	lress match,	and is only v	alid from add	ress match				
bit 1	1 = Indica	e Address bit (ites that the u iss does not n	ser needs to	o update the	address in th	e SSPADD i	egister					
bit 0	BF: Buffer Full Status bit											
	Receive (SPI and I ² C modes):											
		e complete, S										
		e not complete n I ² C mode or		is empty								
		it in progress,		s full (8 bits)								
		it complete, S		· · ·								

Note 1: This bit is cleared when the SSP module is disabled (i.e., the SSPEN bit is cleared).


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

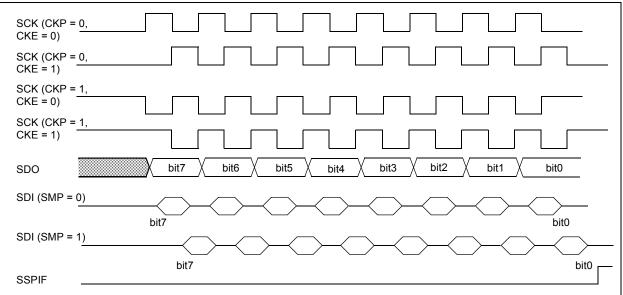
REGISTER 10-2: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER 1 (ADDRESS 14h)

	(ADDRE	SS 14h)						
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0
	bit 7							bit 0
bit 7	1 = An atte	be cleared in	the SSPBUF	register failed t	because the	SSP module	is busy	
bit 6	SSPOV: Re In SPI mod 1 = A new I flow, th SSPBL is not a registe 0 = No ove In I^2C mode 1 = A byte	eceive Overfl <u>e</u> : byte is receiv le data in SS JF, even if on set since ea r. erflow <u>e:</u> is received w n Transmit m	PSR is lost. (ly transmitting ch new recep rhile the SSP	bit SSPBUF register Overflow can or g data, to avoid otion (and trans BUF register is must be cleared	nly occur in S setting overfi smission) is still holding t	Slave mode. low. In Maste initiated by he previous	The user mu r mode, the writing to th byte. SSPO\	ist read the overflow bit e SSPBUF
bit 5	$\frac{\text{In SPI mod}}{1 = \text{Enables}}$ $0 = \text{Disables}$ $\frac{\text{In I}^2\text{C mode}}{1 = \text{Enables}}$	<u>e</u> : s serial port a s serial port <u>e</u> : s the serial p	and configure	able bit ⁽¹⁾ s SCK, SDO, a s these pins as gures the SDA a s these pins as	I/O port pin	s s as serial po		
bit 4	$\frac{\text{In SPI mod}}{1 = \text{Transm}}$ $0 = \text{Transm}$ $\frac{\text{In } I^2\text{C Slave}}{\text{SCK releas}}$ $1 = \text{Enable}$	nit happens o nit happens o <u>e mode</u> : e control clock	n falling edge n rising edge,	e, receive on ris , receive on fall Jsed to ensure	ing edge. IDI	_E state for o		
bit 3-0	$\begin{array}{l} 0000 = \text{SP} \\ 0001 = \text{SP} \\ 0010 = \text{SP} \\ 0010 = \text{SP} \\ 0100 = \text{SP} \\ 0101 = \text{SP} \\ 0110 = \text{I}^2\text{C} \\ 0111 = \text{I}^2\text{C} \\ 1011 = \text{I}^2\text{C} \\ 1110 = \text{I}^2\text{C} \\ 1111 = \text{I}^2\text{C} \end{array}$	I Master mod I Master mod I Master mod I Master mod I Slave mode Slave mode Slave mode Slave mode Slave mode Slave mode Slave mode	te, clock = OS de, clock = OS de, clock = OS de, clock = OS de, clock = SCH e, c	SC/16 SC/64 /IR2 o <u>utp</u> ut/2 < pin. <u>SS</u> pin co s s sss er mode (Slave s with START a ss with START a	ontrol enable ontrol disable IDLE) and STOP bi	d. SS can be t interrupts e	nabled) pin.
	Note 1: In	both modes	, when enable	ed, these pins r	nust be prop	erly configur	ed as input o	or output.

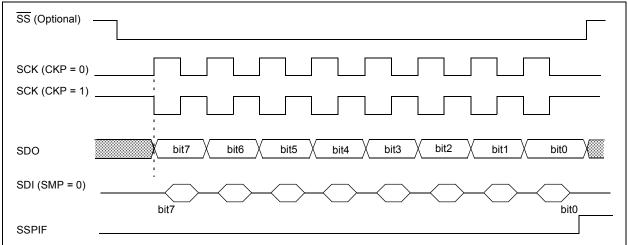
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 10-1: SSP BLOCK DIAGRAM (SPI MODE)

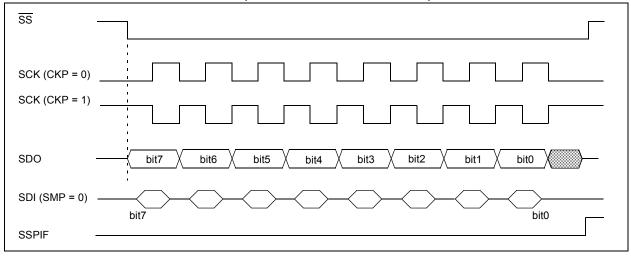
To enable the serial port, SSP enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISB register) appropriately programmed. That is:

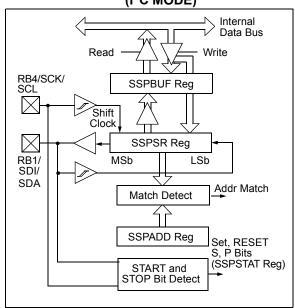

- SDI must have TRISB<1> set
- SDO must have TRISB<2> cleared
- SCK (Master mode) must have TRISB<4> cleared
- SCK (Slave mode) must have TRISB<4> set
- SS must have TRISB<5> set
 - Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - If the SPI is used in Slave mode with CKE = 1, then the SS pin control must be enabled.
 - 3: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the state of SS pin can affect the state read back from the TRISB<5> bit. The Peripheral OE signal from the SSP module into PORTB controls the state that is read back from the TRISB<5> bit. If Read-Modify-Write instructions, such as BSF, are performed on the TRISB register while the SS pin is high, this will cause the TRISB<5> bit to be set, thus disabling the SDO output.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Value on POR, BOR		e on ther ETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	0000
0Ch	PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
86h	TRISB	PORTB	Data Dire	ction Regis	ster					1111	1111	1111	1111
13h	SSPBUF	Synchro	nous Seria	al Port Rec	eive Buf	fer/Transn	nit Registe	er		XXXX	xxxx	uuuu	uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000	0000	0000	0000


TABLE 10-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.




10.3 SSP I²C Mode Operation

The SSP module in I²C mode fully implements all slave functions, except general call support, and provides interrupts on START and STOP bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the Standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RB4/SCK/SCL pin, which is the clock (SCL), and the RB1/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISB<4,1> bits.

The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

FIGURE 10-5: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I²C operation:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled to support firmware Master mode
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled to support firmware Master mode
- I²C Firmware controlled Master operation with START and STOP bit interrupts enabled, Slave is IDLE

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISB bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C operation may be found in the PICmicro[™] Mid-Range MCU Reference Manual (DS33023).

10.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISB<4,1> set). The SSP module will override the input state with the output data, when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

Either or both of the following conditions will cause the SSP module not to give this ACK pulse:

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 10-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the SSP module, are shown in timing parameter #100 and parameter #101.

10.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave device. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

10.3.1.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then a no Acknowledge (ACK) pulse is given. An overflow condition is indicated if either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

10.3.1.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit, and pin RB4/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RB4/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master device must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master device by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 10-7).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

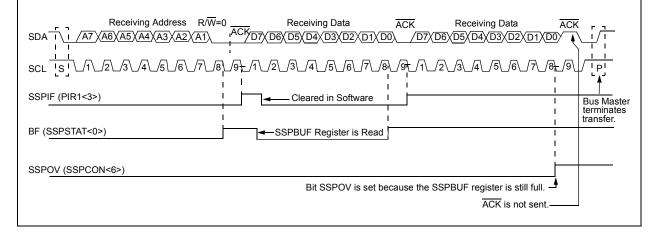

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the ACK is latched by the slave device, the slave logic is reset (resets SSPSTAT register) and the slave device then monitors for another occurrence of the START bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RB4/SCK/SCL should be enabled by setting bit CKP.

TABLE 10-2:	DATA TRANSFER RECEIVED BYTE ACTIONS
-------------	-------------------------------------

	its as Data is Received	$SSPSR \to SSPBUF$	Generate ACK Pulse	Set bit SSPIF
BF	SSPOV			(SSP Interrupt Occurs if Enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

FIGURE 10-6: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

FIGURE 10-7: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

$SDA \xrightarrow{\text{Receiving Address}} RW = 1$	Transmitting Data ACK
SCL	▲ SCL held low while CPU \ responds to SSPIF
SSPIF (PIR1<3>)	Cleared in Software
BF (SSPSTAT<0>)	
CKP (SSPCON<4>)	I From SSP Interrupt
	Set bit after writing to SSPBUF (the SSPBUF must be written to before the CKP bit can be set).

ſ

10.3.2 MASTER MODE OPERATION

Master mode operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when the P bit is set, or the bus is IDLE and both the S and P bits are clear.

In Master mode operation, the SCL and SDA lines are manipulated in firmware by clearing the corresponding TRISB<4,1> bit(s). The output level is always low, irrespective of the value(s) in PORTB<4,1>. So, when transmitting data, a '1' data bit must have the TRISB<1> bit set (input) and a '0' data bit must have the TRISB<1> bit cleared (output). The same scenario is true for the SCL line with the TRISB<4> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode operation can be done with either the Slave mode IDLE (SSPM3:SSPM0 = 1011), or with the Slave mode active. When both Master mode operation and Slave modes are used, the software needs to differentiate the source(s) of the interrupt.

For more information on Master mode operation, see Application Note AN554, "Software Implementation of l^2C Bus Master".

10.3.3 MULTI-MASTER MODE OPERATION

In Multi-Master mode operation, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET, or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is IDLE and both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master mode operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISB<4,1>). There are two stages where this arbitration can be lost:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the Slave device continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

For more information on Multi-Master mode operation, see Application Note AN578, "Use of the SSP Module in the of I^2C Multi-Master Environment".

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, E		Valu all o RES	
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 (00x	0000	0000
0Ch	PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0	0000	-000	0000
8Ch	PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0	0000	-000	0000
13h	SSPBUF	Synchron	ous Seria	I Port Rece	ive Buffe	r/Transmi	t Register			XXXX X	XXXX	uuuu	uuuu
93h	SSPADD	Synchron	ous Seria	l Port (l ² C r	node) Ad	dress Re	gister			0000 0	0000	0000	0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0	0000	0000	0000
94h	SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000 0	000	0000	0000
86h TRISB PORTB Data Direction register									1111 1	111	1111	1111	

 TABLE 10-3:
 REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: Maintain these bits clear in I^2C mode.

NOTES:

11.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The USART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

Bit SPEN (RCSTA<7>) and bits TRISB<5,2> have to be set in order to configure pins RB5/SS/TX/CK and RB2/SDO/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The USART module also has a multi-processor communication capability, using 9-bit address detection.

REGISTER 11-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D
	bit 7							bit 0
bit 7	CSRC: Cloc		elect bit					
	<u>Asynchrono</u> Don't care	<u>us mode:</u>						
	<u>Synchronou</u> 1 = Master r 0 = Slave m	node (clock			m BRG)			
bit 6	TX9 : 9-bit Tr 1 = Selects 9 0 = Selects 9	9-bit transmi	ssion					
bit 5	TXEN : Tran 1 = Transmi 0 = Transmi	enabled	bit					
	Note: S	REN/CREN	l overrides 7	XEN in Syn	ic mode.			
bit 4	SYNC: USA 1 = Synchro 0 = Asynchro							
bit 3	Unimpleme							
bit 2	BRGH: High							
	Asynchrono							
	1 = High spe	ed						
	0 = Low spe							
	<u>Synchronou</u> Unused in th							
bit 1	TRMT : Trans 1 = TSR em 0 = TSR full		egister Statu	s bit				
bit 0	TX9D: 9th b	it of Transm	it Data, can	be Parity bit				
	Legend:							
	P - Readab	lo hit	$\Lambda = \Lambda $	table bit	II – Unimol	amontad hi	t road as "	o'

R = Readable bit	W = Writable bit	U = Unimplemented I	pit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

SPEN RX9 SREN CREN ADDEN FERR OERR bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RB2/SDO/RX/DT and RB5/SS/TX/CK pins as ser 0 = Serial port disabled bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Serial port disabled bit 5 SREN: Single Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 9-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care Don't care Synchronous mode - Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete Synchronous mode: 1 = Enables continuous receive Don't care Don't care Dot't care Synchronous mode: 1 = Enables continuous receive bit 4 CREN: Continuous receive 0 = Disables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode: 1 = Enables address detection, enables interrupt and load of the receive buffer wt RSR<8's is set bit 2 FERR: Framing Error bit 1 = Enables address detection, all bytes	0	R-x
bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RB2/SDO/RX/DT and RB5/SS/TX/CK pins as series of a Serial port disabled bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care Synchronous mode - Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete Synchronous mode - Slave: Don't care bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables continuous receive 1 = Enables continuous receive Synchronous mode: 1 = Enables differs detection, enables interrupt and load of the receive buffer wf RSR RSR RSR s is set bit 3 ADDEN: Address detection, all bytes are received, and ninth bit can be used at the remaing error bit 1 = Enables address detecti	RR R	RX9D
 1 = Serial port enabled (configures RB2/SD0/RX/DT and RB5/SS/TX/CK pins as ser 0 = Serial port disabled bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care Synchronous mode - Master: 1 = Enables single receive 0 = Disables single receive Don't care Synchronous mode - Slave: Don't care Synchronous mode: 1 = Enables single receive This bit is cleared after reception is complete Synchronous mode: 1 = Enables continuous Receive Enable bit Asynchronous mode: 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode: 1 = Enables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode: 1 = Enables address detection, enables interrupt and load of the receive buffer wf RSR<8> is set 0 = Disables address detection, all bytes are received, and ninth bit can be used at bit 2 FERR: Framing Error bit 1 = Franting Error bit 1 = Overrun Error bit 1 = Overrun error (can be updated by reading RCREG register and receive next v 0 = No overrun error 		bit 0
 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit <u>Asynchronous mode</u>: Don't care <u>Synchronous mode - Master:</u> 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete <u>Synchronous mode - Slave:</u> Don't care bit 4 CREN: Continuous Receive Enable bit <u>Asynchronous mode:</u> 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode: 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode: 1 = Enables continuous receive Synchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enables interrupt and load of the receive buffer wfree RSR<8> is set 0 = Disables address detection, all bytes are received, and ninth bit can be used at bit 2 FERR: Framing Error bit 1 = Framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be updated by reading RCREG register and receive next v 0 = No framing error bit 1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error 	s serial po	ort pins)
Asynchronous mode: Don't care Synchronous mode - Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete Synchronous mode - Slave: Don't care bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive Synchronous mode: 1 = Enables continuous receive 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enables interrupt and load of the receive buffer wh RSR<8 is set 0 = Disables address detection, all bytes are received, and ninth bit can be used at bit 2 bit 4 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receive next w 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error		
Don't care bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode: 1 = Enables continuous receive Synchronous mode: 1 = Enables continuous receive Synchronous mode: 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received, and ninth bit can be used at bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receive next who is no framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error		
Asynchronous mode: 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode: 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enables interrupt and load of the receive buffer where RSR<8> is set 0 = Disables address detection, all bytes are received, and ninth bit can be used at the set of the terming error bit 1 = Framing error (can be updated by reading RCREG register and receive next word of the terming error bit 1 OERR: Overrun Error bit 1 = Overrun error 0 = No overrun error		
 Asynchronous mode 9-bit (RX9 = 1): = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set = Disables address detection, all bytes are received, and ninth bit can be used at bit 2 FERR: Framing Error bit = Framing error (can be updated by reading RCREG register and receive next who is no framing error bit 1 OERR: Overrun Error bit = Overrun error (can be cleared by clearing bit CREN) = No overrun error 	rides SRE	EN)
bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receive next work of a No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error		ritv bit
1 = Overrun error (can be cleared by clearing bit CREN)0 = No overrun error		
bit 0 RX9D: 9th bit of Received Data (can be parity bit, but must be calculated by user	iser firmw	are)
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as	d = = (0)	

REGISTER 11-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

11.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free-running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 11-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 11-1. From this, the error in baud rate can be determined.

It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

11.1.1 USART AND INTRC OPERATION

The PIC16F87/88 has an 8 MHz INTRC that can be used as the system clock, thereby eliminating the need for external components to provide the clock source. When the INTRC provides the system clock, the USART module will also use the INTRC as its system clock. Table 11-1 shows some of the INTRC frequencies that can be used to generate the USART's baud rate.

11.1.2 LOW POWER MODE OPERATION

The system clock is used to generate the desired baud rate; however, when a Low Power mode is entered, the low power clock source may be operating at a different frequency than in full power execution. In SLEEP mode, no clocks are present. This may require the value in SPBRG to be adjusted.

11.1.3 SAMPLING

The data on the RB2/SDO/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 11-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 11-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	99h SPBRG Baud Rate Generator Register								0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

BAUD	F	osc = 20 M	IHz	F	osc = 16 N	IHz	F	Fosc = 10 MHz		
RATE (K)			SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3		_	_	_	_	_	—	_	_	
1.2	1.221	+1.75	255	1.202	+0.17	207	1.202	+0.17	129	
2.4	2.404	+0.17	129	2.404	+0.17	103	2.404	+0.17	64	
9.6	9.766	+1.73	31	9.615	+0.16	25	9.766	+1.73	15	
19.2	19.531	+ 1.72	15	19.231	+0.16	12	19.531	+1.72	7	
28.8	31.250	+8.51	9	27.778	-3.55	8	31.250	+8.51	4	
33.6	34.722	+3.34	8	35.714	+6.29	6	31.250	-6.99	4	
57.6	62.500	+8.51	4	62.500	+8.51	3	52.083	-9.58	2	
HIGH	1.221	_	255	0.977	_	255	0.610	_	255	
LOW	312.500	_	0	250.000	_	0	156.250	_	0	

TABLE 11-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

DAUD		Fosc = 4 M	Hz	Fosc = 3.6864 MHz				
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)		
0.3	0.300	0	207	0.3	0	191		
1.2	1.202	+0.17	51	1.2	0	47		
2.4	2.404	+0.17	25	2.4	0	23		
9.6	8.929	+6.99	6	9.6	0	5		
19.2	20.833	+8.51	2	19.2	0	2		
28.8	31.250	+8.51	1	28.8	0	1		
33.6	_	_	_	_	_	_		
57.6	62.500	+8.51	0	57.6	0	0		
HIGH	0.244	_	255	0.225	_	255		
LOW	62.500	_	0	57.6	_	0		

TABLE 11-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	F	osc = 20 M	Hz	F	osc = 16 M	Hz	F	Fosc = 10 MHz			
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)		
0.3	—	_	_	—	_	_	_	_	-		
1.2	_	_	_	_	_	_	_	_	_		
2.4	_	_	_	_	_	_	2.441	+1.71	255		
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64		
19.2	19.231	+0.16	64	19.231	+0.16	51	19.531	+1.72	31		
28.8	29.070	+0.94	42	29.412	+2.13	33	28.409	-1.36	21		
33.6	33.784	+0.55	36	33.333	-0.79	29	32.895	-2.10	18		
57.6	59.524	+3.34	20	58.824	+2.13	16	56.818	-1.36	10		
HIGH	4.883	_	255	3.906	_	255	2.441	_	255		
LOW	1250.000	_	0	1000.000	_	0	625.000	_	0		

BAUD	F	osc = 4 MH	łz	Fosc = 3.6864 MHz					
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)			
0.3	_	_	_		_	_			
1.2	1.202	+0.17	207	1.2	0	191			
2.4	2.404	+0.17	103	2.4	0	95			
9.6	9.615	+0.16	25	9.6	0	23			
19.2	19.231	+0.16	12	19.2	0	11			
28.8	27.798	-3.55	8	28.8	0	7			
33.6	35.714	+6.29	6	32.9	-2.04	6			
57.6	62.500	+8.51	3	57.6	0	3			
HIGH	0.977	—	255	0.9	—	255			
LOW	250.000	—	0	230.4	—	0			

BAUD RATE (K)	1	Fosc = 8 M	Hz	1	Fosc = 4 M	Hz		Fosc = 2 M	lHz		Fosc = 1 MHz		
	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	NA		_	0.300	0	207	0.300	0	103	0.300	0	51	
1.2	1.202	+0.16	103	1.202	+0.16	51	1.202	+0.16	25	1.202	+0.16	12	
2.4	2.404	+0.16	51	2.404	+0.16	25	2.404	+0.16	12	2.232	-6.99	6	
9.6	9.615	+0.16	12	8.929	-6.99	6	10.417	+8.51	2	NA	_	_	
19.2	17.857	-6.99	6	20.833	+8.51	2	NA	_	_	NA	_	_	
28.8	31.250	+8.51	3	31.250	+8.51	1	31.250	+8.51	0	NA	_	_	
38.4	41.667	+8.51	2	NA	_	_	NA	_	_	NA	_	_	
57.6	62.500	+8.51	1	62.500	8.51	0	NA	_	_	NA	_	_	

TABLE 11-5: INTRC BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

TABLE 11-6: INTRC BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	I	Fosc = 8 M	Hz		Fosc = 4 M	Hz		Fosc = 2 M	Hz		Fosc = 1 MHz		
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	NA	—	_	NA	_	_	NA	—	_	0.300	0	207	
1.2	NA	_	_	1.202	+0.16	207	1.202	+0.16	103	1.202	+0.16	51	
2.4	2.404	+0.16	207	2.404	+0.16	103	2.404	+0.16	51	2.404	+0.16	25	
9.6	9.615	+0.16	51	9.615	+0.16	25	9.615	+0.16	12	8.929	-6.99	6	
19.2	19.231	+0.16	25	19.231	+0.16	12	17.857	-6.99	6	20.833	+8.51	2	
28.8	29.412	+2.12	16	27.778	-3.55	8	31.250	+8.51	3	31.250	+8.51	1	
38.4	38.462	+0.16	12	35.714	-6.99	6	41.667	+8.51	2	NA	_	_	
57.6	55.556	-3.55	8	62.500	+8.51	3	62.500	+8.51	1	62.500	+8.51	0	

11.2 USART Asynchronous Mode

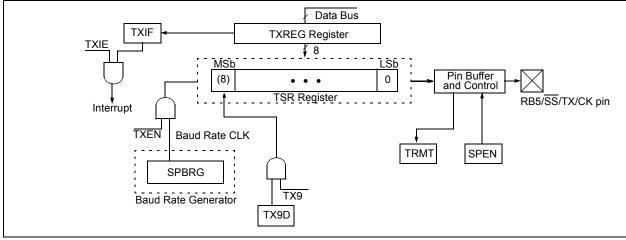
In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

11.2.1 USART ASYNCHRONOUS TRANSMITTER

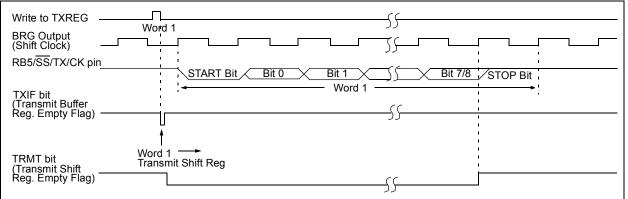

The USART transmitter block diagram is shown in Figure 11-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be

enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

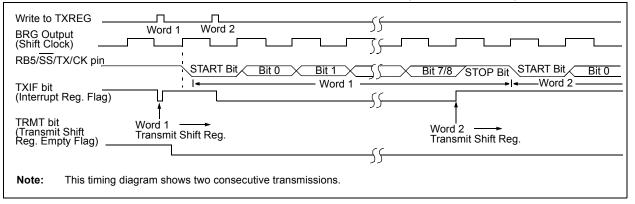
Note	1:	The TSR register is not mapped in data memory, so it is not available to the user.
	2:	Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 11-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 11-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RB5/SS/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.


FIGURE 11-1: USART TRANSMIT BLOCK DIAGRAM

When setting up an Asynchronous Transmission, follow these steps:


- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 11.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 11-2: ASYNCHRONOUS MASTER TRANSMISSION

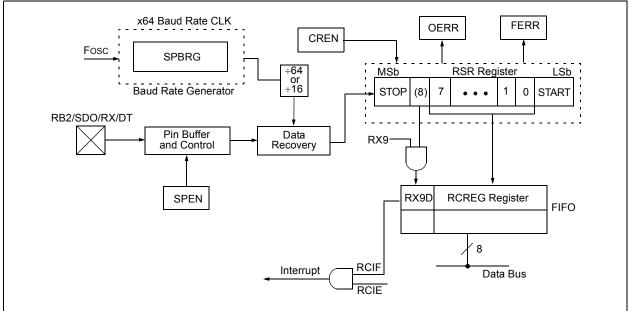
FIGURE 11-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 11-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS	
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	-000 000x	-000 000u	
0Ch	PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000	
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x	
19h	TXREG	USART Tra	USART Transmit Register						0000 0000	0000 0000		
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010	
99h	SPBRG	Baud Rate	Generato	r Register						0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

11.2.2 USART ASYNCHRONOUS RECEIVER


The receiver block diagram is shown in Figure 11-4. The data is received on the RB2/SDO/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter, operating at x16 times the baud rate; whereas, the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two-deep FIFO). It

is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, and no further data will be received. It is, therefore, essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading the RCREG register, in order not to lose the old FERR and RX9D information.

FIGURE 11-4: USART RECEIVE BLOCK DIAGRAM

FIGURE 11-5: ASYNCHRONOUS RECEPTION

Rcv Shift Reg Rcv Buffer Reg	<u>_</u>	<u>_</u>			
Read Rcv Buffer Reg RCREG	 	Word 1 RCREG	Word 2 RCREG		
RCIF (Interrupt Flag)	<u> </u>	i			
OERR bit	<u>_</u>		<u> </u>	<u> </u>	
CREN	<u> </u>		<u> </u>	<u> </u>)

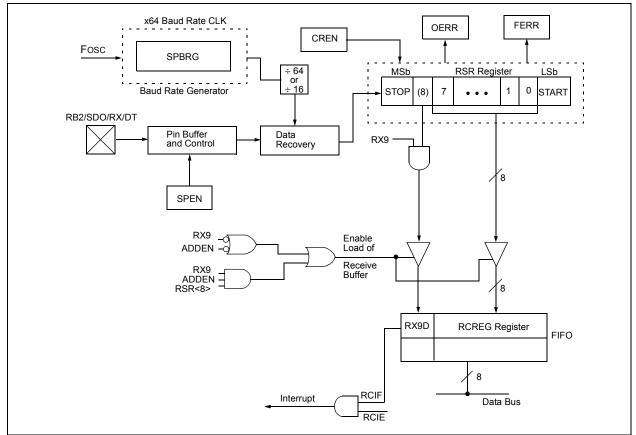
When setting up an Asynchronous Reception, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 11.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

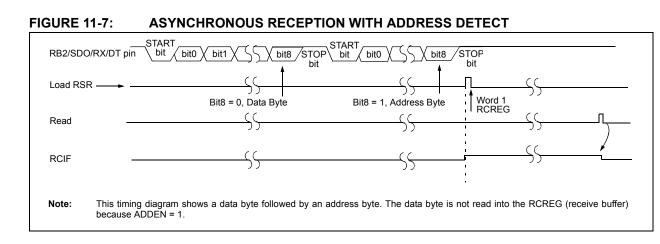
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	x00-000x	0000 -00x
1Ah	RCREG	USART R	Receive Reg	gister						0000 0000	0000 0000
8Ch	PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rat	e Generato	r Register		•				0000 0000	0000 0000

TABLE 11-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION


Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

11.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT


When setting up an Asynchronous Reception with Address Detect Enabled:

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- Set ADDEN to enable address detect.
- Enable the reception by setting enable bit CREN.

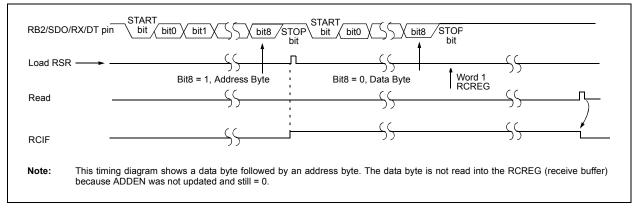

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register, to determine if the device is being addressed.
- If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer, and interrupt the CPU.

FIGURE 11-6: USART RECEIVE BLOCK DIAGRAM

FIGURE 11-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

TABLE 11-9: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART Re	ceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generato	or Register	•					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

11.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit SPEN (RCSTA<7>) is set in order to configure the RB5/SS/TX/CK and RB2/SDO/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

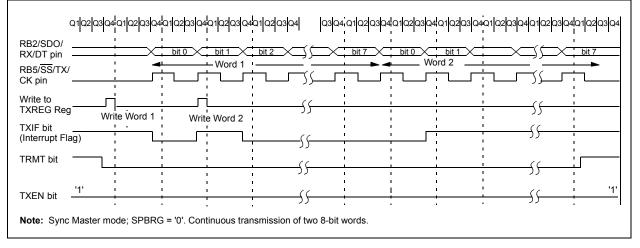
11.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 11-6. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the read/write transmit buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and interrupt bit TXIF (PIR1<4>) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

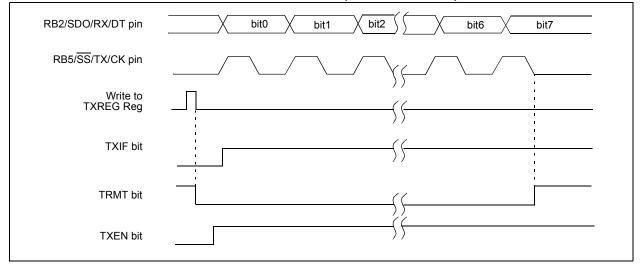
Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 11-9). The transmission can also be started by first loading the TXREG register and then setting bit TXEN (Figure 11-10). This is advantageous when slow baud rates are selected, since the BRG is kept in RESET when bits TXEN, CREN and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally, when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hiimpedance. If either bit CREN or bit SREN is set during a transmission, the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic, however, is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear bit TXEN. If bit SREN is set (to interrupt an on-going transmission and receive a single word), then after the single word is received, bit SREN will be cleared and the serial port will revert back to transmitting, since bit TXEN is still set. The DT line will immediately switch from Hi-Impedance Receive mode to transmit and start driving. To avoid this, bit TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR was empty and the TXREG was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.


Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 11.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register							0000 0000	0000 0000

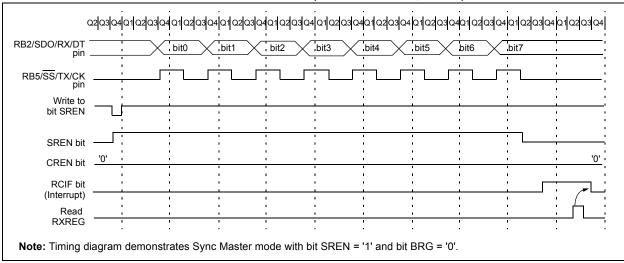
Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

FIGURE 11-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

11.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RB2/SDO/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth

receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG, in order not to lose the old RX9D information.


When setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 11.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Generate	or Registe	r					0000 0000	0000 0000

TABLE 11-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

FIGURE 11-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

11.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RB5/SS/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

11.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on: BOR	all c	e on other SETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000	000x	0000	000u
0Ch	PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	0000	000x
19h	TXREG	USART Tr	ansmit R	egister						0000	0000	0000	0000
8Ch	PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate	Generat	or Registe	r					0000	0000	0000	0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

11.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Reception, follow these steps:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1		ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	tor Registe	ər					0000 0000	0000 0000

TABLE 11-13: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

12.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has seven inputs for 18/20 pin devices (PIC16F88 only).

The conversion of an analog input signal results in a corresponding 10-bit digital number. The A/D module has a high and low voltage reference input that is software selectable to some combination of VDD, VSS, RA2, or RA3.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- Analog Select Register (ANSEL)

The ADCON0 register, shown in Register 12-2, controls the operation of the A/D module. The ANSEL register, shown in Register 12-1 and the ADCON1 register, shown in Register 12-3, configure the functions of the port pins. The port pins can be configured as analog inputs (RA3/RA2 can also be voltage references) or as digital I/O.

Additional information on using the A/D module can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

REGISTER 12-1: ANSEL REGISTER (PIC16F88 DEVICE ONLY)

U-0	R/W-1						
_	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0

bit 7 Unimplemented: Read as '0'

bit 6-0 **ANS<6:0>:** Analog Input Select bits

Bits select input function on corresponding AN<6:0> pins

1 = Analog I/O (see notes below)

0 = Digital I/O

- **Note 1:** Setting a pin to an analog input disables the digital input buffer. The corresponding TRIS bit should be set to Input mode when using pins as analog inputs. Only AN2 is an analog I/O, all other ANx pins are analog inputs.
 - **2:** See the Block Diagrams for the Analog I/O pins to see how ANSEL interacts with the CHS bits of the ADCON0 register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC16F87/88

TER 12-2:	ADCON0:	A/D CON	FROL REG	ISTER 0 (A	DDRESS	1Fh)		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON
	bit 7					•		bit 0
bit 7-6	ADCS<1:0	>: A/D Conv	version Cloc	k Select bits				
	If ADSC2 =	= <u>0:</u>						
	00 = Fosc							
	01 = Fosc	-						
	10 = Fosc	-	d from the in	iternal A/D m	odulo PC c	scillator)		
	If ADSC2 :	-				Scillator)		
	00 = Fosc							
	01 = Fosc							
	10 = Fosc	/64						
	11 = Frc (clock derive	d from the in	iternal A/D m	nodule RC c	oscillator)		
bit 5-3	CHS<2:0>	: Analog Ch	annel Select	bits				
		annel 0 (RA0						
		annel 1 (RA1	,					
		annel 2 (RA2 annel 3 (RA3						
		annel 4 (RA4	,					
		annel 5 (RB6	-					
		annel 6 (RB7						
bit 2	GO/DONE	: A/D Conve	ersion Status	bit				
	If ADON =	<u>1:</u>						
				•		/D conversion)		
				(this bit is au	itomatically	cleared by har	dware whe	en the A/D
		sion is comp						
bit 1	•	nented: Rea	d as '0'					
bit 0	ADON: A/							
		onverter mod						
	0 = A/D cc	onverter mod	iule is shut-c	m and consu	mes no ope	erating current		
	Lenerd							
	Legend:							

REGISTEI

R = Readable bit

- n = Value at POR

W = Writable bit

'1' = Bit is set

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

REGISTER 12-3: ADCON1 REGISTER (PIC16F88 DEVICE ONLY)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
ADFM	ADCS2	VCFG1	VCFG0		_	—	—
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bits

- 1 = Right justified. Six Most Significant bits of ADRESH are read as '0'.
- 0 = Left justified. Six Least Significant bits of ADRESH are read as '0'.

bit 6 ADCS2: A/D Clock Divide by 2 Select bits

- 1 = A/D clock source is divided by 2 when system clock is used
- 0 = Disabled
- bit 5-4 VCFG<1:0>: A/D Voltage Reference Configuration bits

Logic State	VREF+	VREF-
0.0	AVdd	AVss
01	AVDD	VREF-
10	VREF+	AVss
11	VREF+	VREF-

Note: The ANSEL bits for AN3 and AN2 inputs must be configured as analog inputs for the VREF+ and VREF- external pins to be used.

bit 3-0 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The ADRESH:ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 12-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

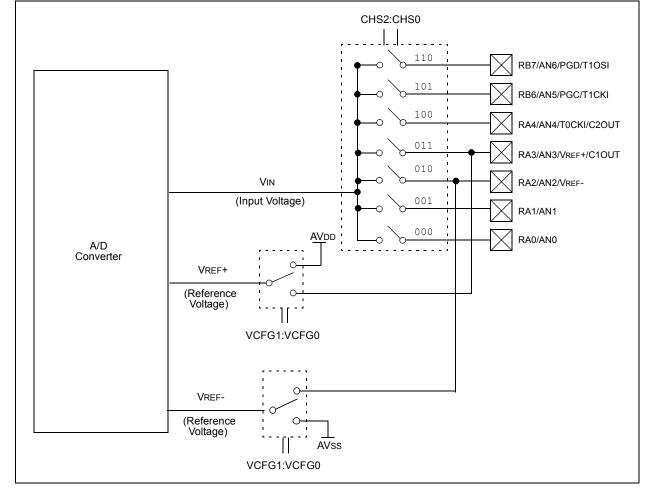
To determine sample time, see Section 12.1. After this sample time has elapsed the A/D conversion can be started.

These steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog/digital I/O (ANSEL)
 - Configure voltage reference (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

• Set ADIE bit

2.


Set GIE bit

· Clear ADIF bit

3. Wait the required acquisition time.

Configure A/D interrupt (if desired):

- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts disabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 12-1: A/D BLOCK DIAGRAM

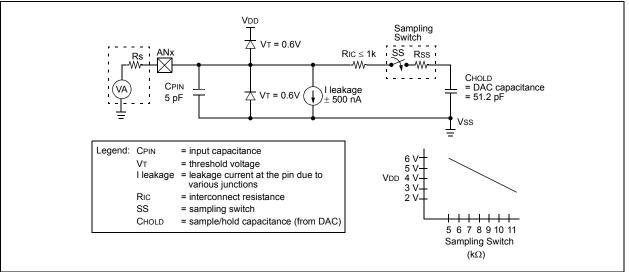
12.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 12-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 12-2. The maximum recommended impedance for analog sources is 2.5 k Ω . As the impedance is decreased, the acquisition time

EQUATION 12-1: ACQUISITION TIME

may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 12-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.


To calculate the minimum acquisition time, TACQ, see the PICmicro™ Mid-Range Reference Manual (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
Тс	= TAMP + TC + TCOFF = $2 \mu s + TC + [(Temperature -25^{\circ}C)(0.05 \mu s/^{\circ}C)]$ = CHOLD (RIC + RSS + RS) In(1/2047) = -120 pF (1 k Ω + 7 k Ω + 10 k Ω) In(0.0004885) = 16.47 \mu s
TACQ	= $16.47 \ \mu s$ = $2 \ \mu s + 16.47 \ \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$ = $19.72 \ \mu s$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

FIGURE 12-2: ANALOG INPUT MODEL

12.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.0 TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The seven possible options for TAD are:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal A/D module RC oscillator (2 6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time as small as possible, but no less than 1.6 μ s and not greater than 6.4 μ s.

Table 12-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

12.3 Configuring Analog Port Pins

The ADCON1, ANSEL, TRISA, and TRISB registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<2:0> bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the RA4:RA0 and RB7:RB6 pins), may cause the input buffer to consume current out of the device specification.

	AD Clock Source (TAD)	Maximum Device Frequency	
Operation	ADCS<2>	ADCS<1:0>	Max.
2 Tosc	0	0.0	1.25 MHz
4 Tosc	1	00	2.5 MHz
8 Tosc	0	01	5 MHz
16 Tosc	1	01	10 MHz
32 Tosc	0	10	20 MHz
64 Tosc	1	10	20 MHz
RC ^(1,2,3)	Х	11	(Note 1)

TABLE 12-1: TAD VS. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

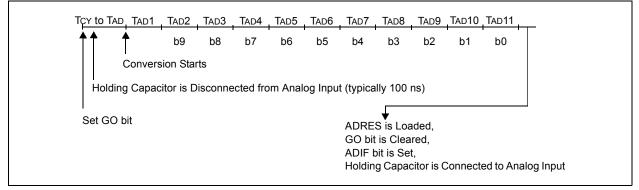
Note 1: The RC source has a typical TAD time of 4 μ s, but can vary between 2 - 6 μ s.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

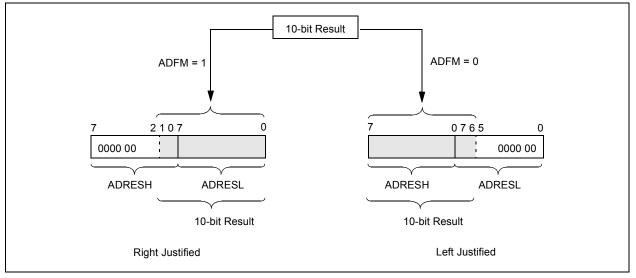
3: For extended voltage devices (LF), please refer to the Electrical Characteristics (Section 18.0 and Section 18.4).

12.4 A/D Conversions

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2 TAD wait is required before the next acquisition is started. After this 2 TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.


In Figure 12-3, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.


12.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 12-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 12-3: A/D CONVERSION TAD CYCLES

FIGURE 12-4: A/D RESULT JUSTIFICATION

12.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

12.6 Effects of a RESET

A device RESET forces all registers to their RESET state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

12.7 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as '1011' and that the A/D module is enabled (AD<u>ON</u> bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	Valu all o RES	ther
0Bh, 8Bh 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
1Eh	ADRESH ⁽¹⁾	A/D Res	ult Regist	er High Byt	е					xxxx	xxxx	uuuu	uuuu
9Eh	ADRESL ⁽¹⁾	A/D Res	ult Regist	er Low Byte	9					xxxx	xxxx	uuuu	uuuu
1Fh	ADCON0 ⁽¹⁾	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000	00-0	0000	00-0
9Fh	ADCON1 ⁽¹⁾	ADFM	ADCS2	VCFG1	VCFG0		_	—	—	0000		0000	
9Bh	ANSEL ⁽¹⁾	_	AN6	AN5	AN4	AN3	AN2	AN1	AN0	-111	1111	-111	1111
05h	PORTA-87 PORTA-88	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxx0	0000	uuuu uuu0	0000
05h, 106h	PORTB-87 PORTB-88	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx 00xx	xxxx xxxx	uuuu 00uu	
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽¹⁾	(1) PORTA Data Direction Register					1111	1111	1111	1111
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111	1111	1111	1111

TABLE 12-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: PIC16F88 only.

2: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

13.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with I/O port pins RA0 through RA3, while the outputs are multiplexed to pins RA3 and RA4. The on-chip Voltage Reference (Section 14.0) can also be an input to the comparators.

REGISTER 13-1: CMCON REGISTER

The CMCON register (Register 13-1) controls the comparator input and output multiplexers. A block diagram of the various comparator configurations is shown in Figure 13-1.

	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0
	bit 7							bit 0
bit 7	C2OUT: Cor	mparator 2 C	utput bit					
	When C2IN							
	1 = C2 VIN+ 0 = C2 VIN+	-						
	When C2IN							
	1 = C2 VIN+	> C2 VIN-						
	0 = C2 VIN+							
bit 6	C1OUT: Cor	-	output bit					
	<u>When C1IN</u> 1 = C1 VIN+							
	0 = C1 VIN+	-						
	When C1IN							
	1 = C1 VIN+	-						
1.1.E	0 = C1 VIN+	-						
bit 5	1 = C2 output	•	itput invers	ion dit				
	1 = C2 output 0 = C2 output		d					
bit 4	C1INV: Com			ion bit				
	1 = C1 outpu	ut inverted						
	0 = C1 outpu	ut not inverte	d					
bit 3	CIS: Compa	•	witch bit					
	<u>When CM2:</u> 1 = C1 VIN- 0		242					
	1 = C1 VIN = 0 0 = C1 VIN = 0		-					
	When CM2:							
	1 = C1 VIN-	connects to I	-					
	C2 VIN- (0 = C1 VIN- (connects to I						
		connects to I						
bit 2-0	CM<2:0>: C							
		·						
	Legend:							
	R = Readab	le bit	W = Wri	itable bit	U = Unimpl	emented b	it, read as '()'
	- n = Value a	at POR	'1' = Bit	is set	'0' = Bit is c	leared	x = Bit is ur	Iknown

13.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select these modes. Figure 13-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in the Electrical Specifications (Section 18.0).

Note:	Comparator interrupts should be disabled
	during a Comparator mode change.
	Otherwise, a false interrupt may occur.

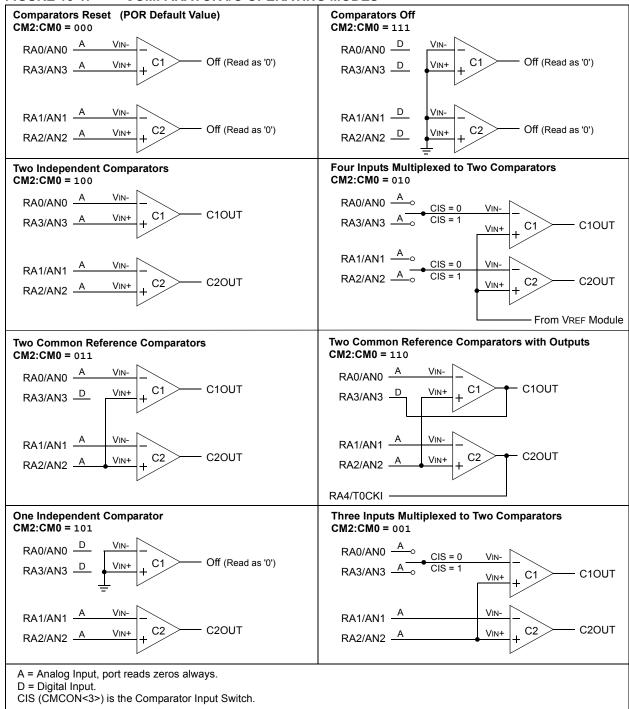


FIGURE 13-1: COMPARATOR I/O OPERATING MODES

13.2 Comparator Operation

A single comparator is shown in Figure 13-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 13-2 represent the uncertainty due to input offsets and response time.

13.3 Comparator Reference

An external or internal reference signal may be used depending on the Comparator Operating mode. The analog signal present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 13-2).

FIGURE 13-2: SINGLE COMPARATOR

13.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same, or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSS and VDD, and can be applied to either pin of the comparator(s).

13.3.2 INTERNAL REFERENCE SIGNAL

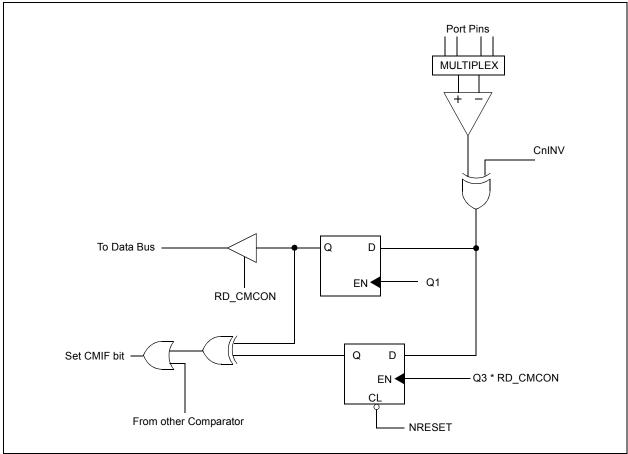
The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 14.0 contains a detailed description of the Comparator Voltage Reference module that provides this signal. The internal reference signal is used when comparators are in mode CM<2:0> = 110 (Figure 13-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

13.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Section 18.0).

13.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When enabled, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 13-3 shows the comparator output block diagram.


The TRISA bits will still function as an output enable/disable for the RA3 and RA4 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<4:5>).

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input, according to the Schmitt Trigger input specification.
 - Analog levels, on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

PIC16F87/88

FIGURE 13-3: COMPARATOR OUTPUT BLOCK DIAGRAM

13.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR registers) is the comparator interrupt flag. The CMIF bit must be reset by clearing it ('0'). Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE registers) and the PEIE bit (INTCON register) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

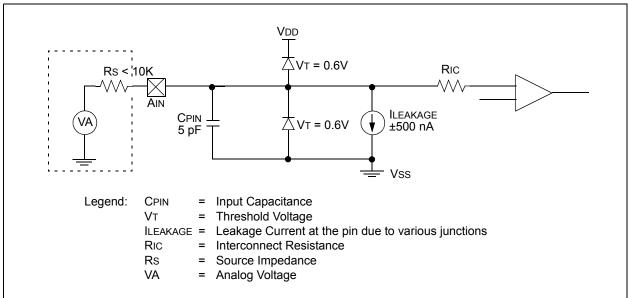
Note: If a change in the CMCON register (C1OUT or C2OUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR registers) interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

13.7 Comparator Operation During SLEEP


When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from SLEEP mode when enabled. While the comparator is powered up, higher SLEEP currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes up from SLEEP, the contents of the CMCON register are not affected.

13.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state, causing the comparator module to be in the Comparator Off mode, CM<2:0> = 111.

13.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 13-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 13-4: ANALOG INPUT MODEL

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTIE	RBIE	TMR0IF	INTIF	RBIF	0000 000x	0000 000u
0Dh	PIR2	OSFIF	CMIF	_	EEIF	_	_	_	_	00-0	00-0
8Dh	PIE2	OSFIE	CMIE	_	EEIE	_	_	_	_	00-0	00-0
05h	PORTA-87 PORTA-88	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000 xxx0 0000	uuuu 0000 uuu0 0000
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽¹⁾	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

TABLE 13-1: REGISTERS ASSOCIATED WITH THE COMPARATOR MODULE

 $\label{eq:legend: constraint} \mbox{Legend: } x \mbox{=} unknown, u \mbox{=} unchanged, \mbox{-} \mbox{=} unimplemented, read as '0'. Shaded cells are unused by the comparator module.$

Note 1: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

14.0 COMPARATOR VOLTAGE REFERENCE MODULE

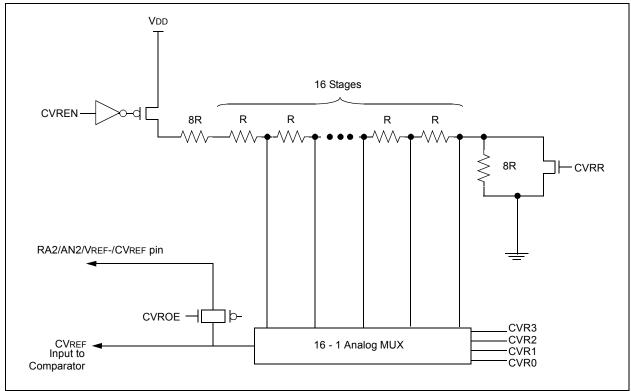
The Comparator Voltage Reference Generator is a 16-tap resistor ladder network that provides a fixed voltage reference when the comparators are in mode '110'. A programmable register controls the function of the reference generator. Register 14-1 lists the bit functions of the CVRCON register.

As shown in Figure 14-1, the resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The comparator reference supply voltage (also referred to as CVRSRC) comes directly from VDD. It should be noted, however, that the voltage at the top of the ladder is CVRSRC – VSAT, where VSAT is the saturation voltage of the power switch transistor. This reference will only be as accurate as the values of CVRSRC and VSAT.

The output of the reference generator may be connected to the RA2/AN2/VREF-/CVREF pin. This can be used as a simple D/A function by the user, if a very high impedance load is used. The primary purpose of this function is to provide a test path for testing the reference generator function.

REGISTER 14-1: CVRCON CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0


bit 7	CVREN: Comparator Voltage Reference Enable bit
	1 = CVREF circuit powered on
	0 = CVREF circuit powered down
bit 6	CVROE: Comparator VREF Output Enable bit
	 1 = CVREF voltage level is output on RA2/AN2/VREF-/CVREF pin 0 = CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin
bit 5	CVRR: Comparator VREF Range Selection bit
	1 = 0.00 CVRSRC to 0.75 CVRSRC, with CVRSRC/24 step size
	0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
bit 4	Unimplemented: Read as '0'
bit 3-0	CVR<3:0>: Comparator VREF Value Selection 0 ≤ VR3:VR0 ≤ 15 bits
	When CVRR = 1:
	$\overline{\text{CVREF}} = (\text{VR} < 3:0 > / 24) \bullet (\text{CVRSRC})$
	When CVRR = 0:
	$CVREF = 1/4 \bullet (CVRSRC) + (VR3:VR0/32) \bullet (CVRSRC)$
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2002 Microchip Technology Inc.

PIC16F87/88

TABLE 14-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

15.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide Power Saving Operating modes and offer code protection:

- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Two-Speed Start-up
- Fail-Safe Clock Monitor
- SLEEP
- Code Protection
- ID Locations
- · In-Circuit Serial Programming

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes, and is enabled or disabled using a configuration bit. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired Oscillator mode.

Additional information on special features is available in the PICmicro[®] Mid-Range Reference Manual (DS33023).

15.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory locations 2007h and 2008h.

The user will note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 **R/P-1 R/P-1** R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 PWRTEN CP ССРМХ RESV WRT1 WRT0 CPD LVP BOREN MCLRE FOSC2 WDTEN FOSC1 FOSC0 bit 13 bit 0 bit 13 CP: FLASH Program Memory Code Protection bits 1 = Code protection off 0 = 0000h to 0FFFh code protected (All protected) bit 12 CCPMX: CCP1 Pin Selection bit 1 = CCP1 function on RB0 0 = CCP1 function on RB3 bit 11 DEBUG: In-Circuit Debugger Mode bit 1 = In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger WRT<1:0>: FLASH Program Memory Write Enable bits bit 10-9 11 = Write protection off 10 = 0000h to 00FFh write protected, 0100h to 0FFFh may be modified by EECON control 01 = 0000h to 07FFh write protected, 0800h to 0FFFh may be modified by EECON control 00 = 0000h to 0FFFh write protected bit 8 CPD: Data EE Memory Code Protection bit 1 = Code protection off 0 = Data EE memory code protected bit 7 LVP: Low Voltage Programming Enable bit 1 = RB3/PGM pin has PGM function, low voltage programming enabled 0 = RB3 is digital I/O, HV on MCLR must be used for programming BOREN: Brown-out Reset Enable bit bit 6 1 = BOR enabled 0 = BOR disabled MCLRE: RA5/MCLR Pin Function Select bit bit 5 1 = RA5/ \overline{MCLR} pin function is \overline{MCLR} 0 = RA5/MCLR pin function is digital I/O, MCLR internally tied to VDD bit 3 **PWRTEN:** Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 2 WDTEN: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled bit 4, 1-0 FOSC<2:0>: Oscillator Selection bits 111 = EXTRC oscillator; CLKO function on RA6/OSC2/CLKO 110 = EXTRC oscillator; Port I/O function on RA6/OSC2/CLKO 101 = INTRC oscillator; CLKO function on RA6/OSC2/CLKO 100 = INTRC oscillator; Port I/O function on RA6/OSC2/CLKO 011 = EXTCLK; Port I/O function on RA6/OSC2/CLKO 010 = HS oscillator 001 = XT oscillator 000 = LP oscillator

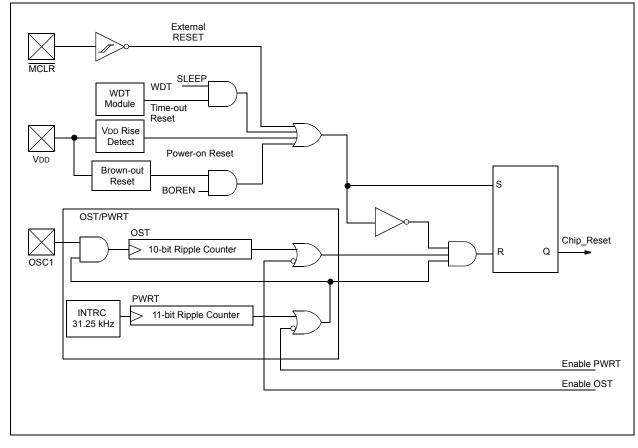
REGISTER 15-1: CONFIGURATION WORD 1 REGISTER (ADDRESS 2007h)

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 15-2: CONFIGURATION WORD 2 REGISTER (ADDRESS 2008h)

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
—	—	—		—	—	—	—	—	—	—	—	IESO	FCMEN
bit 13													bit 0
bit 13-2	Unimp	lemented	d: Read a	s '1'									
bit 1	IESO: I	nternal E	xternal S	witch Ove	er bit								
	1 = Inte	ernal Exte	ernal Swit	ch Over r	node ena	bled							
	0 = Inte	ernal Exte	ernal Swit	ch Over r	node disa	abled							
bit 0	FCMEN	I: Fail Clo	ock Monit	or Enable	e bit								
	1 = Fai	-Safe Clo	ock Monit	or enable	d								
	0 = Fai	-Safe Clo	ock Monit	or disable	ed								
	Legend	1:											
	R = Re	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
	-n = Va	lue at PC	R		'1' = Bit	t is set		'0' = Bit i	is cleared		κ = Bit is ι	unknown	


15.2 RESET

The PIC16F87/88 differentiates between various kinds of RESET:

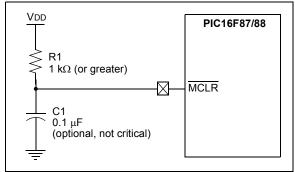
- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- · WDT Reset during normal operation
- WDT Wake-up during SLEEP
- Brown-out Reset (BOR)

Some registers are not affected in any RESET condition. Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during SLEEP, and Brown-out Reset (BOR). They are not affected by a WDT wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different RESET situations, as indicated in Table 15-3. These bits are used in software to determine the nature of the RESET. Upon a POR, BOR, or wake-up from SLEEP, the CPU requires approximately 5 - 10 µs to become ready for code execution. This delay runs in parallel with any other timers. See Table 15-4 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 15-1.

FIGURE 15-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

15.3 MCLR


PIC16F87/88 devices have a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification, can result in both $\overline{\text{MCLR}}$ and excessive current beyond the device specification, during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 15-2, is suggested.

The RA5/ $\overline{\text{MCLR}}$ pin can be configured for $\overline{\text{MCLR}}$ (default), or as an I/O pin (RA5). This is configured through the MCLRE bit in Configuration Word 1.

15.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD, as described in Section 15.3. A maximum rise time for VDD is specified. See Section 18.0, "Electrical Characteristics" for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For more information, see Application Note, AN607 *"Power-up Trouble Shooting"* (DS00607).

15.5 Power-up Timer (PWRT)

The Power-up Timer (PWRT) of the PIC16F87/88 is a counter that uses the INTRC oscillator as the clock input. This yields a count of 72 ms. While the PWRT is counting, the device is held in RESET.

The power-up time delay depends on the INTRC, and will vary from chip-to-chip due to temperature and process variation. See DC parameter #33 for details.

The PWRT is enabled by clearing configuration bit PWRTEN.

15.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from SLEEP.

15.7 Brown-out Reset (BOR)

The configuration bit, BOREN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ s), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer (if enabled) will keep the device in RESET for TPWRT (parameter #33, about 72 ms). If VDD should fall below VBOR during TPWRT, the Brownout Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. Unlike previous PIC16 devices, the PWRT is no longer automatically enabled when the Brown-out Reset circuit is enabled. The PWRTEN and BOREN configuration bits are independent of each other.

15.8 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If $\overline{\text{MCLR}}$ is kept low long enough, all delays will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately. This is useful for testing purposes, or to synchronize more than one PIC16F87/88 device operating in parallel.

Table 15-3 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 15-4 shows the RESET conditions for all the registers.

15.9 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has two bits to indicate the type of RESET that last occurred.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Oo cillator Configuration	Powe	er-up	Brown-o	ut Reset	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	SLEEP	
XT, HS, LP	Tpwrt + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc	
EXTRC, INTRC	TPWRT	5 - 10 μs ⁽¹⁾	TPWRT	5 - 10 μs ⁽¹⁾	5 - 10 μs ⁽¹⁾	
T10SC	—	—	—	—	5 - 10 μs ⁽¹⁾	

TABLE 15-1: TIME-OUT IN VARIOUS SITUATIONS

Note 1: CPU start-up is always invoked on POR, BOR and wake-up from SLEEP. The 5 μs - 10 μs delay is based on a 1 MHz System Clock.

TABLE 15-2: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	
0	Х	1	1	Power-on Reset
0	х	0	х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or Interrupt Wake-up from SLEEP

Legend: u = unchanged, x = unknown

TABLE 15-3: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	uuuu uuuu	uuuu uuuu
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	սսսս սսսս
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	սսսս սսսս
PORTA	xxx0 0000	uuu0 0000	սսսս սսսս
PORTB	XXXX XXXX	uuuu uuuu	սսսս սսսս
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	-000 0000	-000 0000	-uuu uuuu (1)
PIR2	00-0	00-0	uu-u(1)
TMR1L	XXXX XXXX	սսսս սսսս	սսսս սսսս
TMR1H	XXXX XXXX	uuuu uuuu	սսսս սսսս
T1CON	-000 0000	-uuu uuuu	-uuu uuuu
TMR2	0000 0000	0000 0000	սսսս սսսս
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	XXXX XXXX	uuuu uuuu	սսսս սսսս
SSPCON	0000 0000	0000 0000	սսսս սսսս
CCPR1L	XXXX XXXX	սսսս սսսս	սսսս սսսս
CCPR1H	XXXX XXXX	սսսս սսսս	սսսս սսսս
CCP1CON	00 0000	00 0000	uu uuuu
RCSTA	0000 000x	0000 000x	սսսս սսսս
TXREG	0000 0000	0000 0000	սսսս սսսս
RCREG	0000 0000	0000 0000	սսսս սսսս
ADRESH	XXXX XXXX	uuuu uuuu	սսսս սսսս
ADCON0	0000 00-0	0000 00-0	uuuu uu-u

TABLE 15-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and PR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 15-3 for RESET value for specific condition.

Register	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt
OPTION	1111 1111	1111 1111	սսսս սսսս
TRISA	1111 1111	1111 1111	սսսս սսսս
TRISB	1111 1111	1111 1111	սսսս սսսս
PIE1	-000 0000	-000 0000	-uuu uuuu
PIE2	00-0	00-0	uu-u
PCON	dd	uu	
OSCCON	-000 0000	-000 0000	-uuu uuuu
OSCTUNE	00 0000	00 0000	uu uuuu
PR2	1111 1111	1111 1111	1111 1111
SSPADD	0000 0000	0000 0000	սսսս սսսս
SSPSTAT	0000 0000	0000 0000	սսսս սսսս
TXSTA	0000 -010	0000 -010	uuuu -ulu
SPBRG	0000 0000	0000 0000	սսսս սսսս
ANSEL	-111 1111	-111 1111	-111 1111
CMCON	0000 0000	0000 0000	սսսս սսսս
CVRCON	000- 0000	000- 0000	սսս– սսսս
WDTCON	0 1000	0 1000	u luuu
ADRESL	XXXX XXXX	uuuu uuuu	սսսս սսսս
ADCON1	0000	0000	uuuu
EEDATA	XXXX XXXX	uuuu uuuu	սսսս սսսս
EEADR	XXXX XXXX	uuuu uuuu	սսսս սսսս
EEDATH	xx xxxx	uu uuuu	uu uuuu
EEADRH	xxx	uuu	uuu
EECON1	xx x000	ux u000	uu uuuu
EECON2			

TABLE 15-4: IN	NITIALIZATION CONDITIONS FOR ALL REGISTI	ERS (CONTINUED)
----------------	--	-----------------

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and PR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 15-3 for RESET value for specific condition.

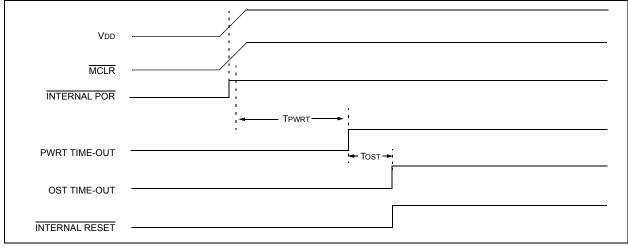


FIGURE 15-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH RC NETWORK): CASE 1

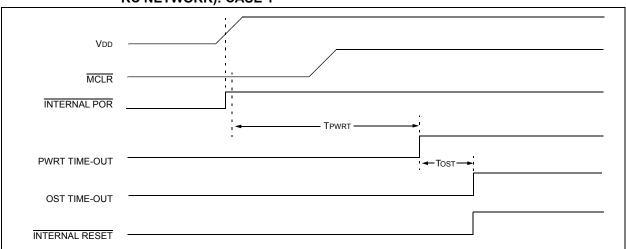


FIGURE 15-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH RC NETWORK): CASE 2

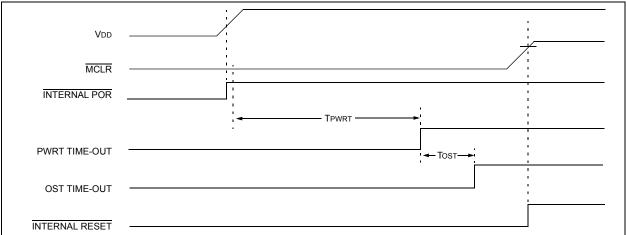
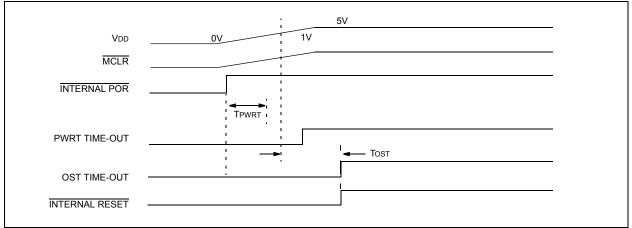
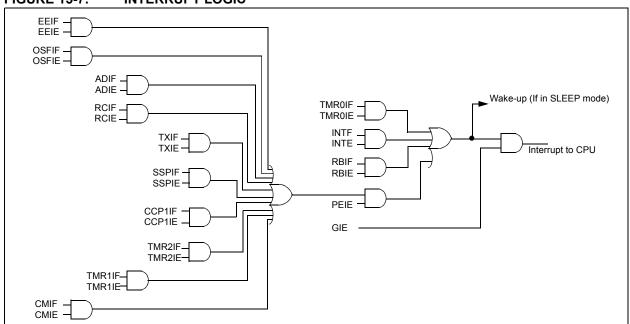



FIGURE 15-6: SLOW RISE TIME (MCLR TIED TO VDD THROUGH RC NETWORK)

15.10 Interrupts

The PIC16F87/88 has up to 12 sources of interrupt. The Interrupt Control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit or the GIE bit.


A global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register. The peripheral interrupt flags are contained in the Special Function Register, PIR1. The corresponding interrupt enable bits are contained in Special Function Register, PIE1, and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is serviced, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack, and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends on when the interrupt event occurs, relative to the current Q cycle. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or the GIE bit.

FIGURE 15-7: INTERRUPT LOGIC

15.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge-triggered, either rising, if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector, following wake-up. See Section 15.13 for details on SLEEP mode.

15.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON<5>), see Section 6.0.

15.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>), see Section 3.2.

15.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W, STATUS registers). This will have to be implemented in software, as shown in Example 15-1.

For the PIC16F87/88 devices, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 20h in bank 0, it must also be defined at A0h in bank 1). The register STATUS_TEMP is only defined in bank 0.

	MOVWF	W_TEMP	;Copy W to TEMP register
1	SWAPF	STATUS,W	;Swap status to be saved into W
1	CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
1	MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
	:		
	:(ISR)		;Insert user code here
	:		
1	SWAPF	STATUS_TEMP,W	;Swap STATUS TEMP register into W
1			;(sets bank to original state)
	MOVWF	STATUS	;Move W into STATUS register
1	SWAPF	W TEMP,F	;Swap W TEMP
	SWAPF	W TEMP,W	;Swap W TEMP into W
		—	

15.12 Watchdog Timer (WDT)

For PIC16F87/88 devices, the WDT has been modified from previous PIC16 devices. The new WDT is code and functionally backward compatible with previous PIC16 WDT modules, and allows the user to have a scaler value for the WDT and TMR0 at the same time. In addition, the WDT time-out value can be extended to 268 seconds, using the prescaler with the postscaler when PSA is set to '1'.

15.12.1 WDT OSCILLATOR

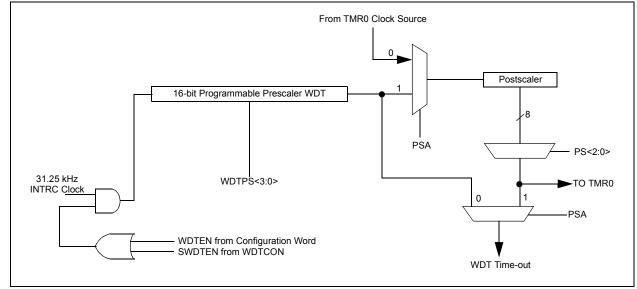
The WDT derives its time-base from the 31.25 kHz INTRC; therefore, the accuracy of the 31.25 kHz will be the same accuracy for the WDT time-out period.

A new prescaler has been added to the path between the internal RC and the multiplexors used to select the path for the WDT. This prescaler is 16-bits and can be programmed to divide the internal RC by 128 to 65536, giving the time-base used for the WDT a nominal range of 1 ms to 2.097s.

15.12.2 WDT CONTROL

The WDTEN bit is located in Configuration Word 1 and when this bit is set, the WDT runs continuously.

The SWDTEN bit is in the WDTCON register. When the WDTEN bit in the Configuration Word 1 register is set, the SWDTEN bit has no effect. If WDTEN is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it.


The PSA and PS<2:0> bits (OPTION_REG) have the same function as in previous versions of the PIC16 family of microcontrollers.

15.12.3 RESET STATE

The value of WDTCON is '---0 1000' on all RESETS. This gives a nominal time-base of 16.38 ms, which is compatible with the time-base generated with previous PIC16 microcontroller versions.

Note: When the OST is invoked, the WDT is held in RESET, because the WDT Ripple Counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled).

FIGURE 15-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 15-5: PRESCALER/POSTSCALER BIT STATUS

Conditions	Prescaler	Postscaler (PSA = 1)
WDTEN = 0	Cleared	Cleared
CLRWDT command		
OSC FAIL detected		
Exit SLEEP + System Clock = T1OSC, EXTRC, INTRC, EXTCLK		
Exit SLEEP + System Clock = XT, HS, LP	Cleared at end of OST	Cleared at end of OST

REGISTER 15-3: WDTCON REGISTER

U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
_	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN
bit 7							bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4-1	WDTPS<3:0>: Watchdog Timer Period Select	t bits
DIL 4-1	WDIF3-3.0 ⁻ . Watchuog Timer Feriou Selec	ເມແລ

		. · · · · · · · · · · · · · · · · · · ·
<u>Bit Valu</u>	e	Prescale Rate
0000	=	1:32
0001	=	1:64
0010	=	1:128
0011	=	1:256
0100	=	1:512
0101	=	1:1024
0110	=	1:2048
0111	=	1:4096
1000	=	1:8192
1001	=	1:16394
1010	=	1:32768
1011	=	1:65536
SWDTE	EN:	Software Enabl

SWDTEN: Software Enable/Disable for Watchdog Timer bit⁽¹⁾

1 = WDT is turned on

bit 0

- 0 = WDT is turned off
 - **Note 1:** If WDTEN configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTEN configuration bit = 0, then it is possible to turn WDT on/off with this control bit.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 15-6: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
2007h	Configuration bits	LVP	BOREN	MVCLRE	FOSC2	PWRTEN	WDTEN	FOSC1	FOSC0
105h	WDTCON	_	_	_	WDTPS3	WDTPS2	WSTPS1	WDTPS0	SWDTEN

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 15-1 for operation of these bits.

15.12.4 TWO-SPEED CLOCK START-UP MODE

Two-Speed Start-up minimizes the latency between oscillator start-up and code execution that may be selected with the IESO (Internal/External Switch Over) bit in Configuration Word 2. This mode is achieved by initially using the INTRC for code execution until the primary oscillator is stable.

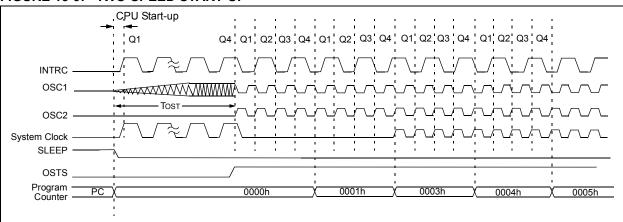
In this mode, upon

- POR and after the Power-up Timer has expired (if PWRTEN = 0),
- · or following a wake-up from SLEEP,
- or a RESET when running from T1OSC or INTRC (after a RESET, SCS<1:0> are always set to '00').

the system will begin execution with the INTRC oscillator. This results in almost immediate code execution with a minimum of delay.

If the primary oscillator is configured to be anything other than XT, LP, or HS, then Two-Speed Start-up is disabled, because the primary oscillator doesn't require any time to become stable after POR, or an exit from SLEEP.

If the IRCF bits of the OSCCON register are configured to a non-zero value prior to entering SLEEP mode, the secondary system clock frequency will come from the output of the INTOSC. The IOFS bit in the OSCCON register will be clear until the INTOSC is stable. This will allow the user to determine when the internal oscillator can be used for time critical applications. Checking the state of the OSTS bit will confirm whether the primary clock configuration is engaged. If not, the OSTS bit will remain clear.


When the device is auto-configured in INTRC mode following a POR or wake-up from SLEEP, the rules for entering other Oscillator modes still apply, meaning the SCS<1:0> bits in OSCCON can be modified before the OST time-out has occurred. This would allow the application to wake-up from SLEEP, perform a few instructions using the INTRC as the clock source and go back to SLEEP without waiting for the primary oscillator to become stable.

Note: Executing a SLEEP instruction will abort the Oscillator Start-up Time and will cause the OSTS bit to remain clear.

15.12.4.1 Two-Speed Start-up Sequence

- 1. Wake-up from SLEEP, RESET, or POR.
- 2. OSCON bits configured to run from INTRC (31.25 kHz).
- Instructions begin execution by INTRC (31.25 kHz).
- 4. OST enabled to count 1024 clock cycles.
- 5. OST timed out, wait for falling edge of INTRC.
- 6. OSTS is set.
- 7. System clock held low for eight falling edges of new clock (LP, XT, or HS).
- 8. System clock is switched to primary source (LP, XT, or HS).

The software may read the OSTS bit to determine when the switch over takes place so that any software timing edges can be adjusted.

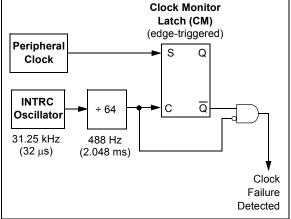


FIGURE 15-9: TWO-SPEED START-UP

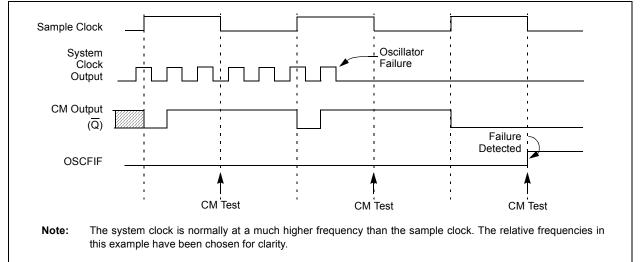
15.12.5 FAIL-SAFE OPTION

The Fail-Safe Clock Monitor (FSCM) is designed to allow the device to continue to operate even in the event of an oscillator failure.

The FSCM function is enabled by setting the FCMEN bit in Configuration Word 2.

In the event of an oscillator failure, the FSCM will generate an Oscillator Fail interrupt and will switch the system clock over to the internal oscillator. The system will continue to come from the internal oscillator until the Fail-Safe condition is exited. The Fail-Safe condition is exited with either a RESET, the execution of a SLEEP instruction, or a write to the SCS bits.

The frequency of the internal oscillator will depend upon the value contained in the IRCF bits. Another clock source can be selected via the IRCF and the SCS bits of the OSCCON register. The FSCM sample clock is generated by dividing the INTRC clock by 64. This will allow enough time between FSCM sample clocks for a system clock edge to occur.


On the rising edge of the postscaled clock, the monitoring latch (CM = 0) will be cleared. On a falling edge of the primary or secondary system clock, the monitoring latch will be set (CM = 1). In the event that a falling edge of the postscaled clock occurs, and the monitoring latch is not set, a clock failure has been detected.

While in Fail-Safe mode, a RESET will exit the Fail-Safe condition. If the primary clock source is configured for a crystal, the OST timer will wait for the 1024 clock cycles for the OST time-out, and the device will continue running from the internal oscillator until the OST is complete. A SLEEP instruction, or a write to the SCS bits (where SCS bits do not = 00), can be performed to put the device into a Low Power mode.

If RESET occurs while in Fail-Safe mode and the primary clock source is EC, or RC, then the device will immediately switch back to EC or RC mode.

15.12.5.1 Fail-Safe in Low Power Mode

A change of SCS<1:0>, or SLEEP instruction will end the Fail-Safe condition. The system clock will default to the source selected by the SCS bits, which is either T1OSC, INTRC, or none (SLEEP mode). However, the FSCM will continue to monitor the system clock. If the secondary clock fails, the device will immediately switch to the internal oscillator clock. If OSFIE is set, an interrupt will be generated.

FIGURE 15-11: FSCM TIMING DIAGRAM

15.12.5.2 FSCM and the Watchdog Timer

When a clock failure is detected, SCS<1:0> will be forced to '10', which will reset the WDT (if enabled).

15.12.5.3 FSCM Following POR or SLEEP

The FSCM is intended to detect oscillator failure at any point after the device has exited POR or SLEEP. However, following a POR or a wake-up from SLEEP, the primary clock will require a start-up time if the primary clock is configured as an oscillator (HS, XT, LP). The amount of time required to ensure a stable oscillator is undetermined and could be considerably longer than the FSCM sample clock time. Therefore, following a Power-on Reset, or following a wake-up from SLEEP, if the primary clock is configured as a crystal input, the INTRC clock is configured as the system clock until the primary clock, determined by fuse bits FOSC<2:0>, becomes stable. That is, if the intended clock is not valid after POR or wake-up is exited, the device will fetch the RESET vector or next instruction, using the INTRC clock until the primary clock becomes stable. This is the same as Two-Speed Start-up mode. If the primary clock is configured as anything else (RC, INTRC, or EC), the FSCM will monitor the system clock immediately following POR or wake-up from SLEEP.

Note: If the primary clock is configured as a crystal (HS, XT, LP) and the oscillator fails to operate following an exit from SLEEP or a POR, there is no way for the user to determine that the oscillator has failed. The user can monitor the OSTS bit in the OSCCON register and use a timing routine to determine if the oscillator time-out is taking too long, but no oscillator fail interrupt will take place.

15.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\texttt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The MCLR pin must be at a logic high level (VIHMC).

15.13.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a peripheral interrupt.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of the device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred and caused wake-up.

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP Capture mode interrupt.
- 3. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 4. SSP (START/STOP) bit detect interrupt.
- 5. SSP transmit or receive in Slave mode (SPI/I²C).
- 6. A/D conversion (when A/D clock source is RC).
- 7. EEPROM write operation completion.
- 8. Comparator output changes state.
- 9. USART RX or TX (Synchronous Slave mode).

Other peripherals cannot generate interrupts, since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding

interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

15.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 15-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

OSC1	; Q1 Q2 Q3 Q4 ; Q1 ////////////////////////////////////	1 Q2 Q3 Q4; /			4 Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4;	Q1 Q2 Q3 Q4;
CLKO ⁽⁴⁾				_{ST} (2)	·		
INT pin	· · ·	•			1		
INTF Flag (INTCON<12	>)				Interrupt Latency (Note 2)		
GIE bit (INTCON<7>	>);	ו ו ו ו	Processor in SLEEP				I I I
INSTRUCTIO	ON FLOW	1	i	i i	1	· · ·	1 1
PC		PC+1	PC+2	X PC+2	X PC + 2	X 0004h	(0005h
Instruction Fetched	$\begin{cases} Inst(PC) = SLEEP \end{cases}$	Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction Executed	Inst(PC - 1)	SLEEP		Inst(PC + 1)	Dummy Cycle	Dummy Cycle	Inst(0004h)
2: 3:	XT, HS or LP Oscillator Tost = 1024 Tosc (drav GIE = '1' assumed. In th If GIE = '0', execution w CLKO is not available ir	ving not to scale nis case, after w vill continue in-li	e). This delay will vake-up, the proc ne.	essor jumps to the in	terrupt routine.		

15.14 In-Circuit Debugger

When the DEBUG bit in the configuration word is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] ICD. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 15-7 shows which features are consumed by the background debugger.

I/O pins	RB6, RB7
Stack	1 level
Program Memory	Address 0000h must be NOP
	Last 100h words
Data Memory	0x070 (0x0F0, 0x170, 0x1F0) 0x1EB - 0x1EF

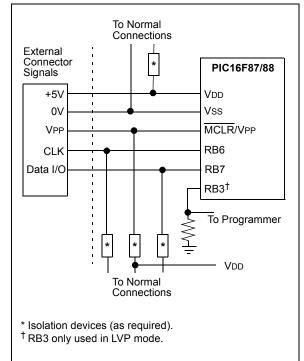
TABLE 15-7: DEBUGGER RESOURCES

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip, or one of the third party development tool companies.

15.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

15.16 ID Locations


Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the four Least Significant bits of the ID location are used.

15.17 In-Circuit Serial Programming

PIC16F87/88 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground, and the programming voltage (see Figure 15-13 for an example). This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For general information of serial programming, please refer to the In-Circuit Serial Programming[™] (ICSP[™]) Guide (DS30277).

FIGURE 15-13:	TYPICAL IN-CIRCUIT
	SERIAL PROGRAMMING
	CONNECTION

15.18 Low Voltage ICSP Programming

The LVP bit of the configuration word enables low voltage ICSP programming. This mode allows the microcontroller to be programmed via ICSP, using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH, but can instead be left at the normal operating voltage. In this mode, the RB3/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. During programming, VDD is applied to the MCLR pin. To enter Programming mode, VDD must be applied to the RB3/PGM pin, provided the LVP bit is set. The LVP bit defaults to on ('1') from the factory.

- Note 1: The High Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low Voltage ICSP mode, the RB3 pin can no longer be used as a general purpose I/O pin.
 - **3:** When using Low Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.
 - 4: RB3 should not be allowed to float if LVP is enabled. An external pull-down device should be used to default the device to normal Operating mode. If RB3 floats high, the PIC16F87/88 device will enter Programming mode.
 - LVP mode is enabled by default on all devices shipped from Microchip. It can be disabled by clearing the LVP bit in the CONFIG register.
 - 6: Disabling LVP will provide maximum compatibility to other PIC16CXXX devices.

If Low Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when programming is entered with VIHH on MCLR. The LVP bit can only be charged when using high voltage on MCLR.

It should be noted, that once the LVP bit is programmed to '0', only the High Voltage Programming mode is available and only High Voltage Programming mode can be used to program the device.

When using low voltage ICSP, the part must be supplied at 4.5V to 5.5V, if a bulk erase will be executed. This includes reprogramming of the code protect bits from an on-state to an off-state. For all other cases of low voltage ICSP, the part may be programmed at the normal operating voltage. This means calibration values, unique user IDs, or user code can be reprogrammed or added.

NOTES:

16.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 16-1, while the various opcode fields are summarized in Table 16-1.

Table 16-2 lists the instructions recognized by the MPASM[™] assembler. A complete description of each instruction is also available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

For **byte-oriented** instructions, '£' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

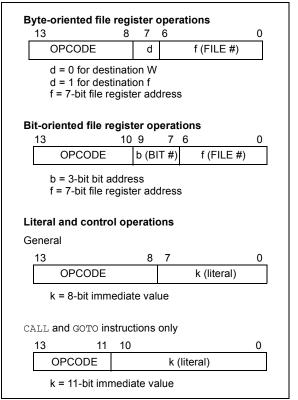
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight- or eleven-bit constant or literal value

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with				
	future PIC16F87/88 products, do not use				
	the OPTION and TRIS instructions.				

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


16.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "clrf PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared.

TABLE 16-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
ТО	Time-out bit
PD	Power-down bit

FIGURE 16-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 16-2: PIC16F87/88 INSTRUCTION SET

Mnemonic,		Description Cycles 14-Bit Opcode				Ð	Status	Natas	
Operan	nds	Description		MSb)		LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATI	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST		RATIO	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

16.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>]BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' = '0', the next instruction is executed. If bit 'b' = '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2 TCY instruction.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' = '1', the next instruction is executed. If bit 'b', in register 'f', = '0', the next instruction is discarded, and a NOP is executed instead, making this a 2 TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC) + 1 → TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>	Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$
Status Affected:	None		$1 \rightarrow \overline{PD}$
Description:	Call subroutine. First, return	Status Affected:	TO, PD
	address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.	Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' = '0', the result is stored in W. If 'd' = '1', the result is stored back in register 'f'.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' = '0', the result is stored in the W regis- ter. If 'd' = '1', the result is stored back in register 'f'.

INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is placed back in register 'f'.

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None	Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2 TCY instruction.	Description:	The contents of register 'f' are incremented. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is placed back in register 'f'. If the result is '1', the next instruc- tion is executed. If the result is '0', a NOP is executed instead, making it a 2 Tcy instruction.

IORLW	Inclusive OR Literal with W	N
Syntax:	[<i>label</i>] IORLW k	S
Operands:	$0 \leq k \leq 255$	C
Operation:	(W) .OR. $k \rightarrow$ (W)	C
Status Affected:	Z	S
Description:	The contents of the W register are OR'd with the eight-bit literal 'k'. The result is placed in the W register.	C

MOVLW	Move Literal to W		
Syntax:	[<i>label</i>] MOVLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \rightarrow (W)$		
Status Affected:	None		
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as '0's.		

IORWF	Inclusive OR W with f		
Syntax:	[<i>label</i>] IORWF f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(W) .OR. (f) \rightarrow (destination)		
Status Affected:	Z		
Description:	Inclusive OR the W register with register 'f'. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is placed back in register 'f'.		

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are moved to a destination dependant upon the status of 'd'. If 'd' = '0', the destination is W register. If 'd' = '1', the destination is file reg- ister 'f' itself. 'd' = '1' is useful to test a file register, since status flag Z is affected.

NOP	No Operation	
Syntax:	[label] NOP	
Operands:	None	
Operation:	No operation	
Status Affected:	None	
Description:	No operation.	

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry	
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d	
Operands:	None	Operands:	$0 \leq f \leq 127$	
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]	
	$1 \rightarrow \text{GIE}$	Operation:	See description below	
Status Affected:	None	Status Affected:	С	
		Description:	C The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is stored back in register 'f'.	

Return with Literal in W	RRF	Rotate Right f through Carry
[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d
$0 \le k \le 255$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
$TOS \rightarrow PC$	Operation:	See description below
None	Status Affected:	С
The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is placed back in register 'f'.
	[<i>label</i>] RETLW k $0 \le k \le 255$ $k \to (W);$ TOS \to PC None The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address).	[/abe/]RETLWSyntax: $0 \le k \le 255$ Operands: $k \rightarrow (W);$ Operation: $TOS \rightarrow PC$ Operation:NoneStatus Affected:The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address).Description:

┍╼╘┝╼	Register f	

RETURN	Return from Subroutine	SLEEP	
Syntax:	[label] RETURN	Syntax:	[label] SLEEP
Operands:	None	Operands:	None
Operation: Status Affected:	$TOS \rightarrow PC$ None	Operation:	00h \rightarrow WDT, 0 \rightarrow WDT prescaler,
Description:	Return from subroutine. The stack is POPed and the top of the stack	Status Affected:	$1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \text{PD} \\ \overline{\text{TO}}, \overline{\text{PD}}$
	(TOS) is loaded into the program counter. This is a two-cycle instruction.	Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its prescaler are cleared.

The processor is put into SLEEP mode with the oscillator stopped.

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k - (W) \to (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

SUBWF	Subtract W from f	XORWF
Syntax:	[<i>label</i>] SUBWF f,d	Syntax:
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$	Operands:
Operation:	(f) - (W) \rightarrow (destination)	Operation:
Status Affected:	C, DC, Z	Status Affecte
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.	Description:

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' = '0', the result is placed in W register. If 'd' = '1', the result is placed in register 'f'.

17.0 DEVELOPMENT SUPPORT

The $\mathsf{PICmicro}^{\textcircled{R}}$ microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

17.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

17.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PICmicro MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

17.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

17.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

17.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

17.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

17.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

17.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

17.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

17.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

17.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42. PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

17.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I^2C^{TM} bus and separate headers for connection to an LCD module and a keypad.

17.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

17.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

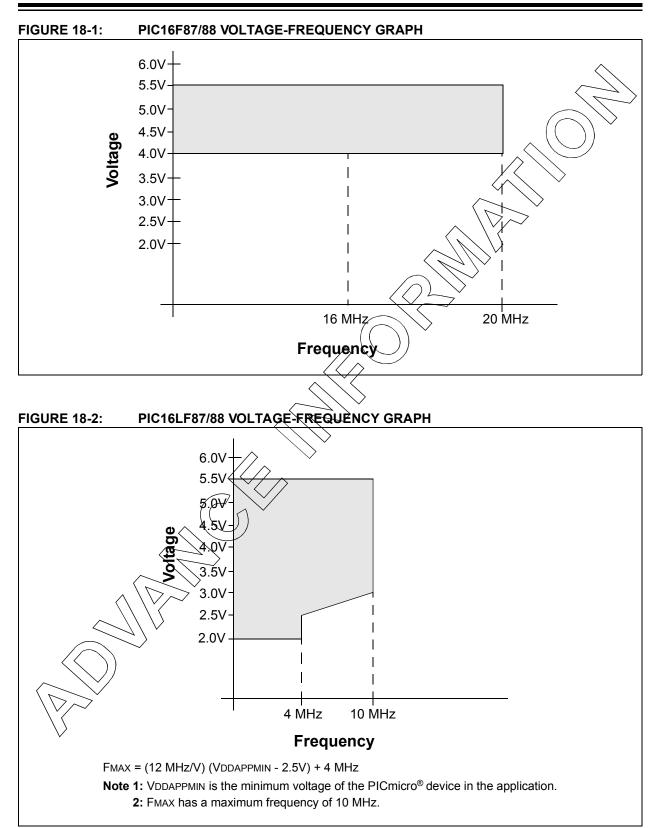
17.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

TABLE 17-1: DEVELOPMENT TOOLS FROM MICROCHIP

Method Method<			PIC12CXXX	PIC14000	PIC16C5X	Х9С91С16	PIC16CXXX	PIC16F62X	X7O91019	XX7281219	PIC16F8X	PIC16F8XX	XX6C91CIG	X4371319	XX73713I9	PIC18CXX2	PIC18FXXX	83CXX 52CXX/ 54CXX/	нсеххх	МСКЕХХХ	MCP2510
MPL-AB ^E C1 ² C complete I </th <th>sloc</th> <th>MPLAB[®] Integrated Development Environment</th> <th>></th> <th></th> <th></th> <th></th> <th></th>	sloc	MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB* C5 In Carcentier I	оТ 9.	MPLAB [®] C17 C Compiler												>	>						
MRAB ⁽¹ C)ticut Emulator / <th>16W3</th> <th>MPLAB[®] C18 C Compiler</th> <th></th> <th>></th> <th>></th> <th></th> <th></th> <th></th> <th></th>	16W3	MPLAB [®] C18 C Compiler														>	>				
MPLA® ^{(CE III-CITCUITE mulator / <th< sup=""></th<>}	foð	MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
(EEPC* In Clicuti Emulator × </th <th>sio</th> <th>MPLAB[®] ICE In-Circuit Emulator</th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>**></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th></th> <th></th> <th></th> <th></th>	sio	MPLAB [®] ICE In-Circuit Emulator	>	>	>	>	>	**>	>	>	>	>	>	>	>	>	>				
Machale (cDinctreation between the constraints b	telum∃	ICEPIC TM In-Circuit Emulator	>		>	>	>		>	>	>		>								
PicsTART® Pluse Entry Level ·<	Debugger	MPLAB® ICD In-Circuit Debugger				*>			*>			>					>				
PRO MATE®IL V <th< th=""><th>sıəm</th><th>PICSTART[®] Plus Entry Level Development Programmer</th><th>></th><th>></th><th>></th><th>></th><th>></th><th>**/</th><th>></th><th>></th><th>></th><th>`</th><th>></th><th>></th><th>></th><th>></th><th>`</th><th></th><th></th><th></th><th></th></th<>	sıəm	PICSTART [®] Plus Entry Level Development Programmer	>	>	>	>	>	**/	>	>	>	`	>	>	>	>	`				
PICDEM ^W 1 Demonstration V <th>Program</th> <th>PRO MATE® II Universal Device Programmer</th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>**/</th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>></th> <th>~</th> <th>></th> <th></th> <th></th>	Program	PRO MATE® II Universal Device Programmer	>	>	>	>	>	**/	>	>	>	>	>	>	>	>	>	~	>		
PICDEM™ 2 Demonstration 1		PICDEM TM 1 Demonstration Board			>		>		⁺,		>			>							
PICDEM™ 13 Demonstration C <th></th> <th>PICDEMTM 2 Demonstration Board</th> <td></td> <td></td> <td></td> <td>⁺,</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>></td> <td>></td> <td></td> <td></td> <td></td> <td></td>		PICDEM TM 2 Demonstration Board				⁺,			+							>	>				
PICDEM™ 14 Demonstration <		PICDEM TM 3 Demonstration Board											>								
PICDEMTW 17 Demonstration PICDEMTW 17 Demonstration PICDEMTW 17 Demonstration PIC PIC<	al Kits	PICDEM TM 14A Demonstration Board		>																	
KEELQd® Evaluation Kit Image: Comparise of the comp	v∃ bri	PICDEM TM 17 Demonstration Board													>						
KEELQd® Transponder Kit Image: Cold DT and Cold DT	e sp	KEELoα [®] Evaluation Kit																	~		
microlD TM Programmer's Kit microlD TM Programmer's Kit <th< th=""><th>1608</th><th>KEELoɑ[®] Transponder Kit</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td></th<>	1608	KEELoɑ [®] Transponder Kit																	>		
125 kHz microlD™ 125 kHz microlD™ Developer's Kit Developer's Kit 125 kHz Anticollision microlD™ 125 kHz Anticollision microlD™ 125 kHz Anticollision microlD™ 125 kHz Anticollision microlD™ 13.56 MHz Anticollision 13.56 MHz Anticollision microlD™ Developer's Kit 13.56 MHz Anticollision microlD™ Developer's Kit 13.56 MHz Anticollision	e or	microlD™ Programmer's Kit																		>	
	Den	125 kHz microlD™ Developer's Kit																		<	
		125 kHz Anticollision microlD™ Developer's Kit																		×	
		13.56 MHz Anticollision microlD TM Developer's Kit																		<	
		MCP2510 CAN Developer's Kit																			>

© 2002 Microchip Technology Inc.


NOTES:

 \langle

18.0 ELECTRICAL CHARACTERISTICS

	$\langle \rangle$
Absolute Maximum Ratings †	\bigcirc
Ambient temperature under bias	()55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.3 to +14V
Total power dissipation (Note 1)	1W
Maximum current out of Vss pin	200 mA
Maximum current into VDD pin	200 mA
Input clamp current, Iık (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	100 mA
Maximum current sourced by PORTA.	100 mA
Maximum current sunk by PORTB	100 mA
Maximum current sourced by PORTE	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD) - VOH) x IOH} + Σ (VOI x IOL)
2: Voltage spikes at the MCLR pin may cause latchup. A series resistor of greate to pull MCLR to the pin the pin directly to VDD.	er than 1 k Ω should be used

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

 $\sim \square$

18.1 DC Characteristics: Supply Voltage PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial)

			-							
PIC16LF8 (Indus				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC16F87 (Indus	7 /88 trial, Extend	led)		rd Operations temperations to the second sec		-40	(unless officerwise stated) $0^{\circ}C \le \sqrt{A} \le +85^{\circ}C$ for industrial $0^{\circ}C \le \sqrt{A} \le +125^{\circ}C$ for extended			
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
	Vdd	Supply Voltage				$\overline{\mathcal{M}}$				
D001		PIC16LF87/88	2.0	-//	5.5_) v	HS, XT, RC and LP Osc mode			
D001		PIC16F87/88	4.0	$\left(+ \right) \left(\right)$	5.5	V				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	B	- 1	V				
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal		>_	0.7	V	See Section 15.4, "Power-on Reset (POR)" for details			
D004	Svdd	VDD Rise Rate to ensure internat Power on Reset signal	0.05	—	—	V/ms	See Section 15.4, "Power-on Reset (POR)" for details			
	VBOR	Brown-out Reset Voltage		•	•	•				
D005		PIC16LF87/88	3.65	_	4.35	V				
D005		PIC16F87/88	3.65	_	4.35	V	EMAX = 14 MHz ⁽²⁾			

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

PIC16LF8 (Indus		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F8 (Indus	7/88 strial, Extended)		rd Oper ng temp	•	-40°C ≤ T⁄	s otherwise state $A \le +85^{\circ}C$ for indus $A \le +125^{\circ}C$ for extended	strija())		
Param No.	Device	Тур	Max	Units		Condi	tions		
	Power-down Current (IPD)	(1)							
	PIC16LF87/88	0.2	TBD	μA	-40°C				
		0.2	TBD	μA	25°C 🗸	2.0V			
		0.3	TBD	μA	85°8	\leq			
	PIC16LF87/88	0.3	TBD	μA	- 40 °C				
		0.3	TBD	μA	25°C	VDD = 3.0V			
		0.4	TBD	μΑ <	85°C				
	All devices	0.4	TBD	μA	∕40°C				
		0.5	TBD	Д	✓ 25°C	VDD = 5.0V			
		0.6	ТВД	(und	85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in SLEER mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all to pits in high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCER = VDC; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula V = VDD/2REXT (mA) with REXT in kΩ.

18.2 DC Characteristics: Power-down and Supply Current PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

PIC16LF8 (Indus			rd Oper ng temp	•	•	s otherwise stated A ≤ +85°C for indust			
PIC16F87 (Indus	7/88 strial, Extended)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Device	Тур	Max	Units		Condit	ions		
	PIC16LF87/88	8	TBD	μA	-40°C				
		10	TBD	μA	25°C	VDD = 2,0%	\mathbf{r}		
		14	TBD	μA	85°C				
	PIC16LF87/88	17	TBD	μA	-40°C				
		16	TBD	μA	25°C	V0D= 3.0V	Fosc = 32 kHz (LP Oscillator)		
		15	TBD	μA	85°C	D >			
	All devices	34	TBD	μA	-40°℃	\mathcal{D}			
		28	TBD	μA	< 25° C	VDD = 5.0V			
		25	TBD	μA	85°C				
	PIC16LF87/88	85	TBD	μA	<u> </u>				
		87	TBD	(µA)	25°C	VDD = 2.0V			
		83	TBD	μÀ	≥ × 85°C				
	PIC16LF87/88	200		μA	-40°C				
		165	TBØ	μA	25°C	VDD = 3.0V	Fosc = 1 MHz (RC Oscillator)		
		150-/	ŢBQ	μA	85°C		(,)		
	All devices	408)tbd	μA	-40°C				
		338-	TBD	μA	25°C	VDD = 5.0V			
		300	TBD	μA	85°C				
	PI216LF87/88	> 233	TBD	μA	-40°C				
	$\wedge \vee \vee$	240	TBD	μA	25°C	VDD = 2.0V			
		243	TBD	μA	85°C	ļ			
	PIC 16LF87/88	466	TBD	μA	-40°C		Fosc = 4 MHz		
		429	TBD	μA	25°C	VDD = 3.0V	(RC Oscillator)		
~		416	TBD	μA	85°C				
$\langle \overline{\gamma} \rangle$	All devices	972	TBD	μA	-40°C				
\Y	\sim	874	TBD	μA	25°C	VDD = 5.0V			
\backslash	\rangle	835	TBD	μA	85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

PIC16LF8 (Indus		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial							
PIC16F87 (Indus			rd Oper ng temp		-40°C ≤ T/	s otherwise state $A \le +85^{\circ}$ C for indus $A \le +125^{\circ}$ C for exte	trial		
Param No.	Device	Тур	Max	Units		Condi	tions		
	Supply Current (IDD) ^(2,3)					>			
	All devices	1.4	TBD	mA	/40°C				
		1.3	TBD	mA	<u>∕~25°C</u>	VDD = 4.0V			
		1.0	TBD	mA	≥85°C		Fosc = 20 MHz		
	All devices	2.4	TBD	mĄ	√-40°C		(HS Oscillator)		
		1.8	твр⁄	∕mA	≥ 25°C	VDD = 5.0V			
		1.6	TBD	mA	85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all points in high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is many a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all DD measurements in active Operation mode are:

OSC(1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

 $\overline{MCLR} \neq \sqrt{DD}$; WDT enabled/disabled as specified.

3: For RC osoilato configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

PIC16LF (Indu	87/88 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F8 (Indu	7/88 strial, Extended)	$\begin{array}{c} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Device	Тур	Max	Units		Condi	tions		
	Supply Current (IDD) ^(2,3)					<			
	PIC16LF87/88	7	TBD	μA	-40°C	\square			
		7	TBD	μA	25°C	VDD = 2.0V	\searrow		
		8	TBD	μA	85°C		\sim		
	PIC16LF87/88	16	TBD	μA	-40°C	$\langle n \rangle >$	Fosc = 31.25 kHz		
		14	TBD	μA	25°C	$V_{DD} = 3.0V$	(RC_RUN mode,		
		13	TBD	μA	85°C	\searrow	Internal RC Oscillator)		
	All devices	35	TBD	μA	-40°¢ (
		28	TBD	μA	25°C	VDD = 5.0V			
		25	TBD	μA	85°C				
	PIC16LF87/88	111	TBD	μA	-40°0				
		116	TBD	_μA <	25°C	VDD = 2.0V			
		122	TBD	уцА	> 85°C				
	PIC16LF87/88	164	TBD	μΑ	≥ -40°C		Fosc = 1 MHz		
		162	(TBD)	μΑ	25°C	VDD = 3.0V	(RC_RUN mode,		
		165	TRO/	μA	85°C		Internal RC Oscillator)		
	All devices	278	TBD	μA	-40°C	-			
	\land	266_	́тво	μA	25°C	VDD = 5.0V			
		266	TBD	μA	85°C				
	PIC16LF87/88	288	TBD	μA	-40°C	4			
		294	TBD	μA	25°C	VDD = 2.0V			
		299	TBD	μA	85°C				
	PIC16LF87/88	441	TBD	μA	-40°C		Fosc = 4 MHz		
	\square	428	TBD	μA	25°C	VDD = 3.0V	(RC_RUN mode, Internal RC Oscillator)		
	$\left(\begin{array}{c} \\ \end{array} \right)$	428	TBD	μA	85°C				
$\langle \cdot \rangle$	All devices	791	TBD	μA	-40°C	.,			
$\langle D \rangle$		752	TBD	μA	25°C	VDD = 5.0V			
	<	747	TBD	μA f the teb	85°C				

Legend \checkmark Shading of rows is to assist in readability of the table.

Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

PIC16LF87/88 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC16F8 (Indu	7/88 strial, Extended)	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial -40°C ≤ TA ≤ +125°C for extended								
Param No.	Device	Тур	Max	Units	Conditions					
	Supply Current (IDD) ^(2,3)						$\overline{\mathbf{v}}$			
	PIC16LF87/88	847	TBD	μA	-40°C		~			
		796	TBD	μA	25°C	VDD = 3.0V				
		784	TBD	μA	85°C	a	Fosc = 8 MHz (RC_RUN mode, Internal RC Oscillator)			
	All devices	1.6	TBD	mA	-40°C					
		1.5	TBD	mA	25°C	VDD = 5.0V				
		1.4	TBD	mA	85 0					
	PIC16LF87/88	13	TBD	μA	< 10°C					
		14	TBD	μΑ	25°C	VDD = 2.0V				
		16	TBD	/piA	70°C					
	PIC16LF87/88	34	TBD	μA	→ -10°C	VDD = 3.0V	Fosc = 32 kHz			
		31	TBD	μΑ	25°C		(SEC_RUN mode,			
		28	JBQ<	/µA	70°C		Timer1 as clock)			
	All devices	72((ТВЮ	μA	-10°C					
		65	JBD	μA	25°C	VDD = 5.0V				
	<	59	> TBD	μA	70°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in SEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

PIC16LF8 (Indus	Standa Operati				s otherwise state $A \le +85^{\circ}C$ for indus					
PIC16F87 (Indus	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$									
Param No.	Device	Тур	Max	Units	Conditions					
	Module Differential Currential	nts (∆lwi	от, ∆Іво	r, ∆Ilvd	, Δ IOSCB, Δ IAD)	\langle				
D022	Watchdog Timer	1.3	TBD	μA	-40°C	\wedge				
(∆lwdt)		0.7	TBD	μA	25°C	VDD = 2.0 V	\searrow			
		0.2	TBD	μA	85°C		>			
		1.0	TBD	μA	-40°C	$\langle \langle \rangle \rangle$				
		1.4	TBD	μA	25°C <	$\sqrt{DD} = 3.0V$				
		2.4	TBD	μA	85°C					
		1.9	TBD	μA	-40°C					
		2.0	TBD	μA	25°C	VDD = 5.0V				
		3.0	TBD	μA	< <u>\$5</u> °C					
D022A (∆lbor)	Brown-out Reset	85	TBD	μΑ	-40°C to +85°C	VDD = 5.0V				
D025	Timer1 Oscillator	1.3	TBD <	(_M A	-10°C					
(Δ IOSCB)		1.3	TBD	ръА	25°C	VDD = 2.0V				
		1.4	TBD	μΑ	70°C					
		1.6	(160)	∕∕μΑ	-10°C					
		1.6	TBD	μA	25°C	VDD = 3.0V	32 kHz on Timer1			
	_	1.7	TBD	μA	70°C					
		2.8	TBD	μA	-10°C					
		2,8	TBD	μA	25°C	VDD = 5.0V				
	$\square \land \lor$	3.0	TBD	μA	70°C					
D026	A/D Converter	44	TBD	μA		VDD = 2.0V				
(ΔAD)	$ \sim \times \times$	53	TBD	μA		VDD = 3.0V	A/D on, not converting			
		61	TBD	μA		VDD = 5.0V				

Legend: Shading of rows is to assist in readability of the table.

Note 1(the power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

DC Characteristics: Internal RC Accuracy 18.3 PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial)

				7/88 (In 87/88 (I		rial, Exte strial)	ended)		
PIC16LF (Indus		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F8 (Indus		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Min	Тур	Max	Units	$\mathbb{P}^{\mathbb{O}}$	∽ Cor	nditions	
	INTOSC Accuracy @ Freq	= 8 MH:	z, 4 MH	z, 2 MHź	, A MH	z, 500 kHz, 2	250 kHz, 125 kHz	<u>,</u> (1)	
	PIC16LF87/88	TBD	+/-1	TBD	1 98	25°C	VDD = 2.0V		
		TBD	+/-1	TBD	` %	25°C	VDD = 3.0V		
	All devices	твр	(+/-1/)	¥твр	%	25°C	VDD = 5.0V		
	INTRC Accuracy @ Freq =	= 31.25 k	Hz ⁽²⁾						
	PIC16LF87/88	28.125	31.25	34.375	kHz	25°C	VDD = 2.0V		
		28.125	31.25	34.375	kHz	25°C	VDD = 3.0V		
	All devices	28.125	31.25	34.375	kHz	25°C	VDD = 5.0V		
	INTRC Stability				-				
	PIC16LF87/88	TBD	1	TBD	%	25°C	VDD = 2.0V		
		TBD	1	TBD	%	25°C	VDD = 3.0V		
	All devices	TBD	1	TBD	%	25°C	VDD = 5.0V		

Shading of rows is to assist in readability of the table. Legend:

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC is used to calibrate INTOSC.

3: Change of INTRC frequency as VDD changes.

R

18.4 DC Characteristics: PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extendedOperating voltage VDD range as described in DC Specification, Section 18.0.					
Param No.	Sym	Characteristic			Units	Conditions	
	VIL	Input Low Voltage				,	$\langle \cdot \rangle$
		I/O ports:					
D030		with TTL buffer	Vss	_	0.15 VDD	Vr	For entire VDD range
D030A			Vss	_	0.8V	$\langle \gamma \rangle$	$4.5V \le VDD \le 5.5V$
D031		with Schmitt Trigger buffer	Vss	_	0.2 VQD	VX /	\rangle
D032		MCLR, OSC1 (in RC mode)	Vss	_	0.2 VDR	$\mathbf{\tilde{\mathbf{A}}}$	(Note 1)
D033		OSC1 (in XT and LP mode)	Vss	-1	()0)3∨	≥ v	
		OSC1 (in HS mode)	Vss		Q3VDD	V	
		Ports RB1 and RB4:	(\frown	\searrow		
D034		with Schmitt Trigger buffer	Vss (\		0.3 VDD	V	For entire VDD range
	Vih	Input High Voltage		\supset			
		I/O ports:					
D040		with TTL buffer	20,~	_	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8V	_	Vdd	V	For entire VDD range
D041		with Schmitt Trigger buffer	0.8 VDD	_	Vdd	V	For entire VDD range
D042		MCLR	0.8 VDD	_	Vdd	V	
D042A		OSC1 (in XT and LP mode)	1.6V	_	Vdd	V	
		OSC1 (in HS mode)	0.7 VDD	_	Vdd	V	
D043		OSC1 (in RC mode)	0.9 Vdd	_	Vdd	V	(Note 1)
		Ports RB1 and RB4:					
D044		with Schmitt Trigger buffer	0.7 VDD	_	Vdd	V	For entire VDD range
D070	Ipurb	PORTB Weak Rull-up Current	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	lı∟	Input Leakage Current (Notes	2, 3)			Γ	
D060		I/O polts	—	—	±1	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance
D061		MCLR	—		±5	μA	$Vss \leq V PIN \leq V DD$
D063 <	$\langle \rangle$	0SC1	—		±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87/88 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

18.4 DC Characteristics: PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

			Standard Oper	ating C	Condition	s (unle	ess otherwise stated)			
DC CHARACTERISTICS			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
DC CH	ARACI	ERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended Operating voltage VDD range as described in DC Specification, Section 18.0.							
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
	Vol	Output Low Voltage								
D080		I/O ports	—	-	0.6	V	l⊗L = 8.5 mA, VDD = 4.5V, -40°C to +125°C			
D083		OSC2/CLKO (RC osc config)	—	-	0.6	V/	løL = 1.6 mA, VDD = 4.5V, -40°C to +125°C			
	Vон	Output High Voltage			\sim	<u> </u>	\rangle			
D090		I/O ports (Note 3)	VDD - 0.7	-		S.	ІОН = -3.0 mA, VDD = 4.5V, -40°C to +125°C			
D092		OSC2/CLKO (RC osc config)	VDD - 0.7		$\mathbf{\mathbf{x}}$	7 v	IOH = -1.3 mA, VDD = 4.5V, -40°C to +125°C			
		Capacitive Loading Specs on	Output Pins	$\left(\right)$						
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
D101	Сю	All I/O pins and OSC2 (in RC mode)		-	50	pF				
D102	Св	SCL, SDA in I ² C mode		—	400	pF				
		Data EEPROM Memory								
D120	ED	Endurance	100K 10K	1M 100K		E/W E/W	-40°C to 85°C +85°C to +125°C			
D121	Vdrw	VDD for read/write	VMIN	—	5.5	V	Using EECON to read/write, VMIN = min. operating voltage			
D122	TDEW	Erase/write cycle time	—	4	8	ms				
		Program FLASH Memory								
D130	Eр	Endurance	10K 1K	100K 10K		E/W E/W	-40°C to 85°C +85°C to +125°C			
D131	Vpr <	VOD for read	VMIN	—	5.5	V				
D132A	\square	VDD-for erase/write	VMIN	-	5.5	V	Using EECON to read/write, VMIN = min. operating voltage			
D133	TPE	₽rase cycle time	—	2	4	ms				
D134	TPW	Write cycle time		2	4	ms				

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87/88 be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.

TABLE 18-1: COMPARATOR SPECIFICATIONS

Operating Conditions: 3.0V < V _{DD} < 5.5V, -40°C < TA < +85°C, unless otherwise stated.							
Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments
D300	Input Offset Voltage	VIOFF	—	± 5.0	± 10	_mV($)) \diamond$
D301	Input Common Mode Voltage*	VICM	0	-	VDD - 1.5	$M \leq$	2
D302	Common Mode Rejection Ratio*	CMRR	55	-		dB	
300 300A	Response Time ^{(1)*}	TRESP	—	150	400	> ns ns	PIC16F87/88 PIC16LF87/88
301	Comparator Mode Change to Output Valid*	Тмс2о∨	- <		10	μS	

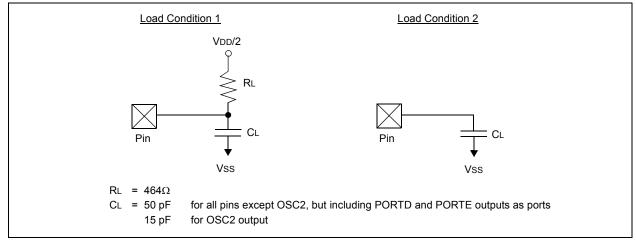
* These parameters are characterized but not tester

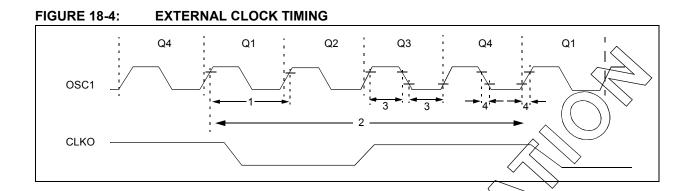
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from Vss to VDD.

TABLE 18-2: VOLTAGE REFERENCE SPECIFICATIONS

Operating	Operating Conditions: $3.0V < VDC < 5.5V, 40°C < TA < +85°C, unless otherwise stated.$						
Spec No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments
D310	Resolution	VRES	VDD/24		VDD/32	LSb	
D311	Absolute Acouracy	VRAA	_	_	1/4	LSb	Low Range (VRR = 1)
			—	—	1/2	LSb	High Range (VRR = 0)
D312	Unit Resistor Value (R)*	VRur	—	2 k	—	Ω	
310	Settling Time ^{(1)*}	TSET	—	—	10	μS	

 V^* These parameters are characterized but not tested.

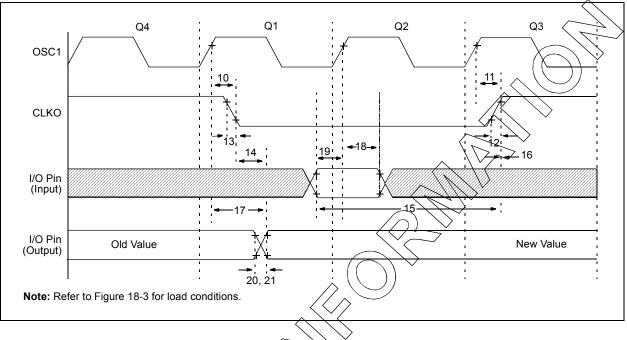

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.


18.5 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

1. TppS2p	S	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I	² C specifications only)		
CC	· · · · · · · · · · · · · · · · · · ·		
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 18-3: LOAD CONDITIONS


TABLE 18-3:	EXTERNAL CLOCK TIMING REQUIREMENTS

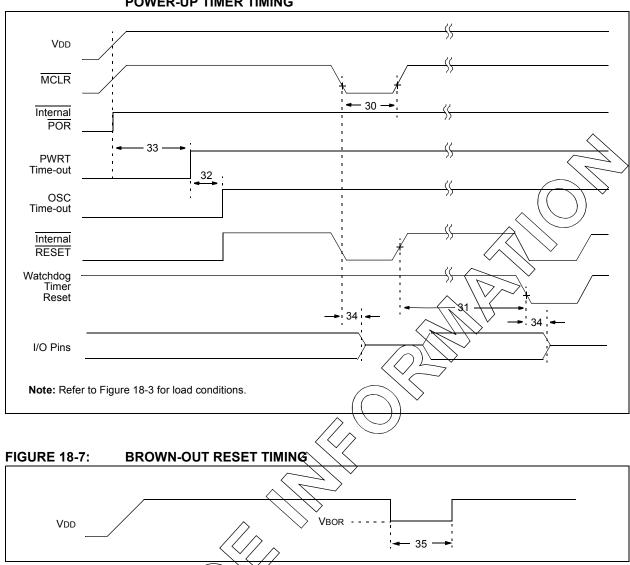
					$ \rightarrow $	$\rightarrow \rightarrow \rightarrow$	>
Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
	Fosc	External CLKI Frequency	DC	_	\mathbf{A}	MHz	XT and RC Osc mode
		(Note 1)	DC	$\left(- \right)$	20	MHz	HS Osc mode
			DC) 200	kHz	LP Osc mode
		Oscillator Frequency	Ø¢	\rangle	4	MHz	RC Osc mode
		(Note 1)	0.1	Κ-	4	MHz	XT Osc mode
			$\Delta $	\succ -	20		HS Osc mode
			5>		200	kHz	LP Osc mode
1	Tosc	External CLKI Period	250	—	—	ns	XT and RC Osc mode
		(Note 1)	50	—	—	ns	HS Osc mode
			5	—	_	μS	LP Osc mode
		Oscillator Period	250	—		ns	RC Osc mode
		(Note 1)	250	—	10,000	ns	XT Osc mode
			100	_	250	ns	HS Osc mode
			50	_	250	ns	HS Osc mode
			5	—	—	μS	LP Osc mode
2	Tcy '	Instruction Cycle Time	200	Тсү	DC	ns	Tcy = 4/Fosc
3	JosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	Tost	Low Time	2.5	—	—	μS	LP oscillator
	\sum	~	15	—	—	ns	HS oscillator
4	JøsR,	External Clock in (OSC1) Rise or		—	25	ns	XT oscillator
	JósF	Fall Time	—		50	ns	LP oscillator
			—	—	15	ns	HS oscillator

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 18-5: CLKO AND I/O TIMING

TABLE 18-4: CLKO AND I/O TIMING REQUIREMENTS


Param No.	Symbol	Charac	teristic	Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKO↓	—	75	200	ns	(Note 1)	
11*	TosH2ckH	OSC11 to CLKO	—	75	200	ns	(Note 1)	
12*	TckR	CLKO rise time)	—	35	100	ns	(Note 1)
13*	TckF	CLKO fall time		—	35	100	ns	(Note 1)
14*	TckL2ioV	CLKO↓ to Port out valid		—	_	0.5 Tcy + 20	ns	(Note 1)
15*	TioV2ckH	Popt in valid before CLKO	Port in-valid before CLKO ↑			—	ns	(Note 1)
16*	TckH2iol	ort in pold after CLKO ↑		0	_	—	ns	(Note 1)
17*	TosH2ioV	QSC1(↑ (Q1 cycle) to Port	SC \↑ (Q1 cycle) to Port out valid			255	ns	
18*	TosH210	QSQ1↑ (Q2 cycle) to	PIC16 F 87/88	100	—	_	ns	
		Port,/nput invalid (I/O in hold time)	PIC16 LF 87/88	200	—	—	ns	
19*	TioV205H	Port input valid to OSC11	(I/O in setup time)	0	_	—	ns	
20*	THOR	Port output rise time	PIC16 F 87/88	—	10	40	ns	
	$7 \sim 7$		PIC16 LF 87/88	_	—	145	ns	
21*	τιοF	Port output fall time	PIC16 F 87/88	_	10	40	ns	
	ľ		PIC16 LF 87/88	_	—	145	ns	
22††*	TINP	INT pin high or low time	·	Тсү	—	—	ns	
23††*	Trbp	RB7:RB4 change INT hig	h or low time	Тсү	—	—	ns	

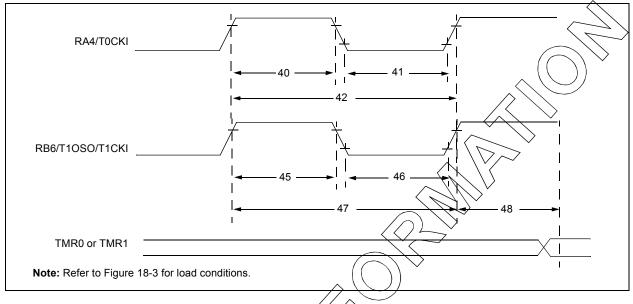
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events, not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKO output is 4 x Tosc.

FIGURE 18-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

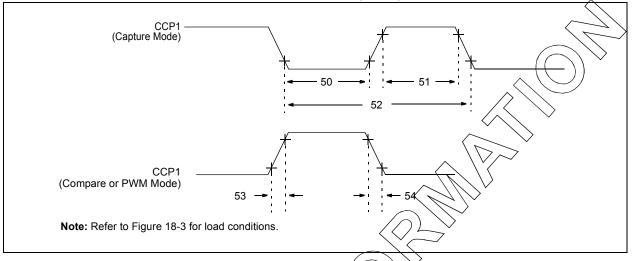

TABLE 18-5: RESET, WATCHOOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (Low)	2	_	_	μS	VDD = 5V, -40°C to +85°C
31*		Watchdog Timer Time-out Period (No Prescaler)	TBD	16	TBD	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	TBD	72	TBD	ms	VDD = 5V, -40°C to +85°C
34	₹ioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	Ι	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_		μS	$VDD \leq VBOR (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TABLE 18-6:	TIMER0 AND TIMER1	EXTERNAL C	٢Ŏ¢	K REQUIREMENTS
-------------	-------------------	------------	-----	----------------

Param No.	Symbol		Characteristic	P	Min	Тур†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse	e Width	No Prescaler	0.5 TCY + 20		_	ns	Must also meet	
				With Prescaler	10		_	ns	parameter 42	
41*	TtOL	T0CKI Low Pulse	Width	No Prescaler	0.5 TCY + 20		_	ns	Must also meet	
					10	l	_	ns	parameter 42	
42*	Tt0P	T0CKI Period	OCKI Period		Tcy + 40	l	_	ns		
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N			ns	N = prescale value (2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous, Pre	scaler = 1	0.5 TCY + 20	_	—	ns	Must also meet	
			Synchronous,	PIC16 F 87/88	15	_	_	ns	parameter 47	
		Prescaler = 2	Prescaler = 2,4,8	PIC16 LF 87/88	25		_	ns		
			Asynchronous	PIC16 F 87/88	30		_	ns		
	\checkmark	\sum		PIC16 LF 87/88	50		_	ns		
46*	Tt1L	T1CK1 Low Time	Synchronous, Prescaler = 1		0.5 TCY + 20		_	ns	Must also meet	
	$\langle \langle \rangle$		Synchronous,	PIC16 F 87/88	15	_	—	ns	parameter 47	
\sim	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	/	Prescaler = 2,4,8	PIC16 LF 87/88	25	_	—	ns		
1			Asynchronous	PIC16 F 87/88	30	_	—	ns		
\backslash	$\sqrt{\sim}$			PIC16 LF 87/88	50	_	—	ns		
47*	ТЫР	T1CKI Input Period	Synchronous	PIC16 F 87/88	Greater of: 30 or <u>Tcy + 40</u> N		—	ns	N = prescale value (1, 2, 4, 8)	
				PIC16 LF 87/88	Greater of: 50 or <u>Tcy + 40</u> N				N = prescale value (1, 2, 4, 8)	
			Asynchronous	PIC16 F 87/88	60	_	—	ns		
				PIC16 LF 87/88	100	_	—	ns		
	Ft1		Input Frequency Ra d by setting bit T1C	DC		32.768	kHz			
48	TCKEZtmr1	Delay from Extern	al Clock Edge to T	imer Increment	2 Tosc	_	7 Tosc	_		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

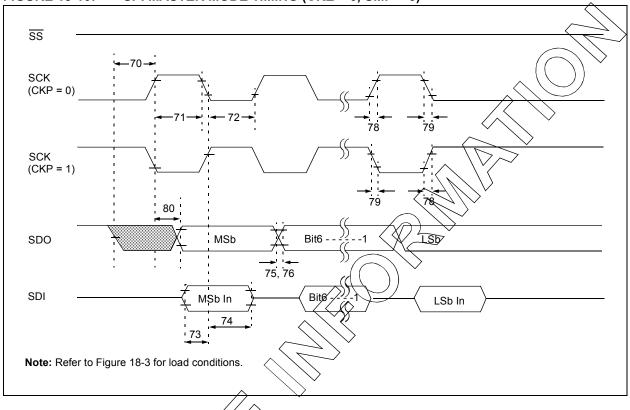
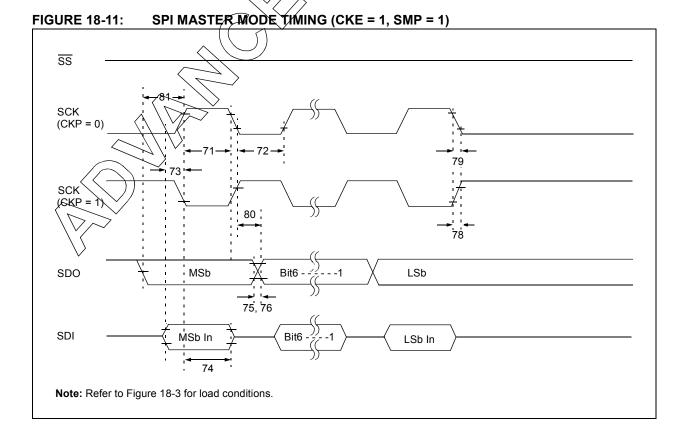
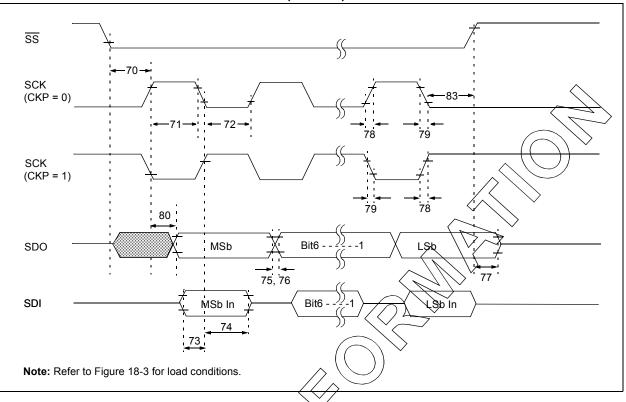
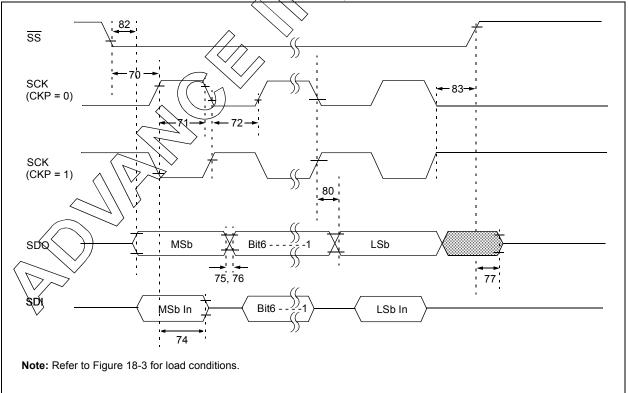


TABLE 18-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)


Param No.	Symbol		Characteristic	<u> III</u>	Min	Тур†	Мах	Units	Conditions
50*	TccL	CCP1	No Prescaler <		0.5 Tcy + 20	—	—	ns	
		Input Low Time		PIC16 F 87/88	10	_	—	ns	
			With Prescaler	PIC16 LF 87/88	20		—	ns	
51*	TccH	CCP1	No Presealer /	>	0.5 Tcy + 20	_	_	ns	
		Input High Time	$\square \vee$	PIC16 F 87/88	10	_	_	ns	
			With Prescaler	PIC16 LF 87/88	20	—		ns	
52*	TccP	CCP1 Input Peri	20		<u>3 Tcy + 40</u> N	—	—	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 Output Ris	se Time	PIC16 F 87/88	_	10	25	ns	
			>	PIC16 LF 87/88	—	25	50	ns	
54*	TccF	CCP1 Output Fa	ll Time	PIC16 F 87/88	_	10	25	ns	
	\langle	$\square \land$		PIC16 LF 87/88	—	25	45	ns	

These parameters are characterized but not tested.


+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


FIGURE 18-10: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

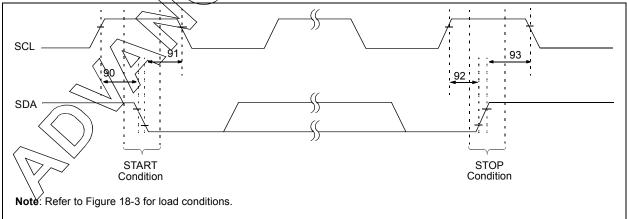

Param No.	Symbol	Characteristic	Min	Typ†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to $SCK\downarrow$ or $SCK\uparrow$ input		Тсү	—	—	ns	$\langle \rangle$
71*	TscH	SCK input high time (Slave mode)		Tcy + 20	_		((ns	
72*	TscL	SCK input low time (Slave mode)		Tcy + 20		$\langle \langle \rangle$	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	edge	100		$\langle \rangle$	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK e	100 <		X	ns		
75*	TdoR	SDO data output rise time	PIC16 F 87/88 PIC16 LF 87/88	=	10	25 50	ns ns	
76*	TdoF	SDO data output fall time			Nŏ	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance		10	- `	50	ns	
78*	TscR	SCK output rise time (Master mode)	PIC16 F 87/88 PIC16 LF 87/88		10 25	25 50	ns ns	
79*	TscF	SCK output fall time (Master mode)		\sim -	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	PIC16 F 87/88 PIC16 E F87/88) =	_	50 145	ns ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge		Тсү	—	—	ns	
82*	TssL2doV	SDO data output valid after SS↓edg	Je V	—	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	\sum	1.5 Tcy + 40	—	—	ns	

TABLE 18-8: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25° content of the stated. These parameters are for design guidance only and are not tested.

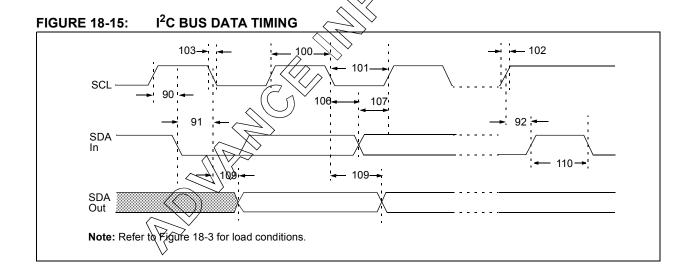
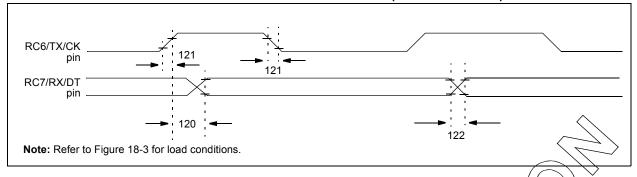

FIGURE 18-14: I²C BUS START/STOP BITS TIMING

TABLE 18-9:	I ² C BUS START/STOP BITS REQUIREMENTS
-------------	---

Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600		_	\langle	START condition
91*	THD:STA	START condition	100 kHz mode	4000		—		After this period the first clock
		Hold time	400 kHz mode	600		- /	$\langle \rangle$	pulse is generated
92*	Tsu:sto	STOP condition	100 kHz mode	4700	_	$\overline{\nabla}$	Vas	
		Setup time	400 kHz mode	600		Ĥ	\searrow	
93	THD:STO	STOP condition	100 kHz mode	4000		$\langle B \rangle$	ns	
		Hold time	400 kHz mode	600 ^{<}	Æ	Ž		

* These parameters are characterized but not tested.



Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	
			400 kHz mode	0.6	_	μS	$\land (\bigcirc)$
			SSP Module	1.5 TCY			
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	$\langle \cdot \rangle$
			400 kHz mode	1.3	—	μs	
			SSP Module	1.5 TCY	_	77	
102*	TR	SDA and SCL rise	100 kHz mode	—	1000 <	\ns∖	
		time	400 kHz mode	20 + 0.1 Св	300		CB is specified to be from 10 - 400 pF
103*	TF	SDA and SCL fall	100 kHz mode	_ //	300	Nns	
		time	400 kHz mode	20 + 0.1 CB	300-	⁷ ns	CB is specified to be from 10 - 400 pF
90*	TSU:STA	START condition	100 kHz mode	(4.7)	—	μS	Only relevant for
		setup time	400 kHz mode	0.6	_	μS	Repeated START condition
91*	THD:STA	START condition	100 kHz mode	4.0	_	μS	After this period, the first
		hold time	400 kHz/mode	0.6	_	μS	clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107*	TSU:DAT	Data input setup	100 kHz mode	250	_	ns	(Note 2)
		time	400 kHz mode	100	—	ns	
92*	Tsu:sto	STOP condition	100 kHz mode	4.7	_	μS	
		setup time	400 kHz mode	0.6	—	μS	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
	\land		400 kHz mode	1.3	_	μS	before a new transmission can start
	Св	Bus capacitive loadir	ng		400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.
2: A Past mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

FIGURE 18-16: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

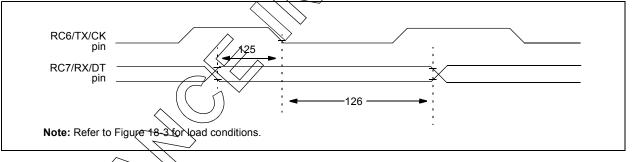


TABLE 18-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Character	Min	Typt	Max	Units	Conditions	
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16 F 87/88	$\langle $	X	~~ 80	ns	
		Clock high to data out valid	PIC16 LF 87/88	\mathcal{A}	\rightarrow	100	ns	
121	Tckrf	Clock out rise time and fall time	PIC16 F 87/88	À	>	45	ns	
		(Master mode)	PIC16LF87/88	λ	_	50	ns	
122	Tdtrf	Data out rise time and fall time	PIC16 F 87/88	\sim	_	45	ns	
			PIC16LF87/88	>	_	50	ns	

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-17: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 18-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	m Characteristic		Тур†	Мах	Units	Conditions
125	TdtV2ckL	<u>SYNC RCV (MASTER & SLAVE)</u> Data setup before CK↓ (DT setup time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15		_	ns	

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

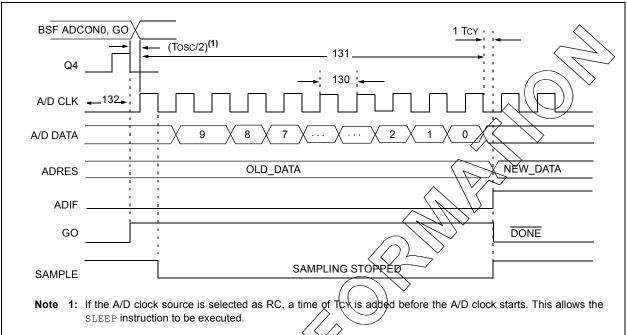
TABLE 18-13: A/D CONVERTER CHARACTERISTICS: PIC16F87/88 (INDUSTRIAL, EXTENDED) PIC16LF87/88 (INDUSTRIAL)

			•				
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	—	_	10 bits	bit	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A03	EIL	Integral linearity error	—	—	< ± 1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A04	Edl	Differential linearity error	—	-		≻ĽSÞ	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	Eoff	Offset error	—	- <		LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A07	Egn	Gain error	_	$\sqrt{2}$	± 1	LSb	$\begin{array}{l} VREF \texttt{=} VDD\texttt{=} \texttt{5.12V},\\ VSS \leq VAIN \leq VREF \end{array}$
A10	_	Monotonicity ⁽³⁾	_	guaranteed	—	_	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference Voltage	2.5 2.2		VDD + 0.3 VDD + 0.3	V V	-40°C to +85°C 0°C to +85°C
A21	VREF+	Reference voltage high	AVDD-2.5V	>	AVDD + 0.3V	V	
A22	VREF-	Reference voltage low	AVSS = 0.3V	•	VREF+ - 2.0V	V	
A25	VAIN	Analog input voltage	V\$\$ -0.3V	_	VREF + 0.3V	V	
A30	ZAIN	Recommended impedance of analog voltage source	\sim		2.5	kΩ	See (Note 4)
A50	IREF	VREF input current ⁽²⁾	_	_	5	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 12.1.
			—	—	500	μA	During A/D Conversion cycle.

* These parameters are characterized but not tested.

+ Data in "Typ" column is at \$V 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.


The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

4: The maximum allowed impedance for analog voltage source is 10 k Ω . This requires higher acquisition times.

TABLE 18-14: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC16F87/88	1.6	_		μS	Tosc based, VREF \geq 3.0V
			PIC16LF87/88	3.0	_	_	μS	Tosc based, VREF $\geq 2.0V$
		(ဗုIC16 F 87/88	2.0	4.0	6.0	μS	A/D RC mode
			RIC161LF87/88	3.0	6.0	9.0	μS	A/D RC mode
131	Τςνν	Conversion time (not i (Note 1)	ncluding S/H time)			12	Tad	
132	TACQ	Acquisition time		(Note 2) 10*	40 —		μs μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TCO	Q4 to A/D clock start		—	Tosc/2	_	—	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

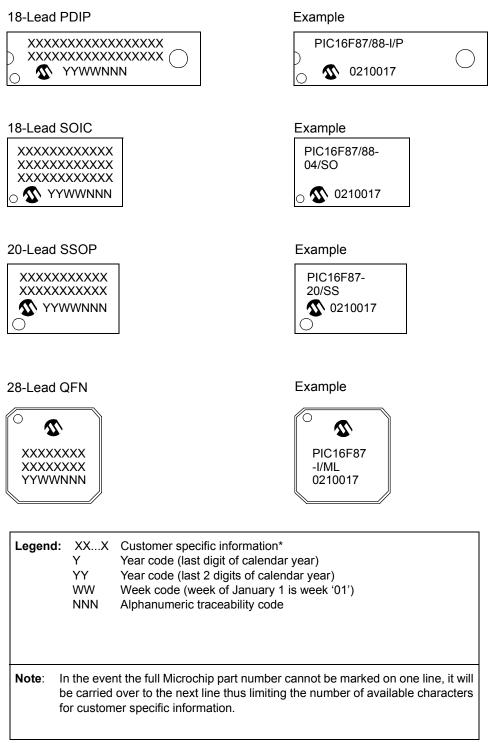
§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 12.1 for minimum conditions.

NOTES:

19.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES


No Graphs and Tables are available at this time.

© 2002 Microchip Technology Inc.

NOTES:

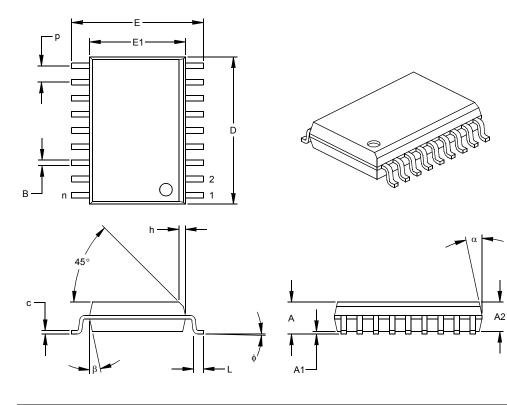
20.0 PACKAGING INFORMATION

20.1 Package Marking Information

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

© 2002 Microchip Technology Inc.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

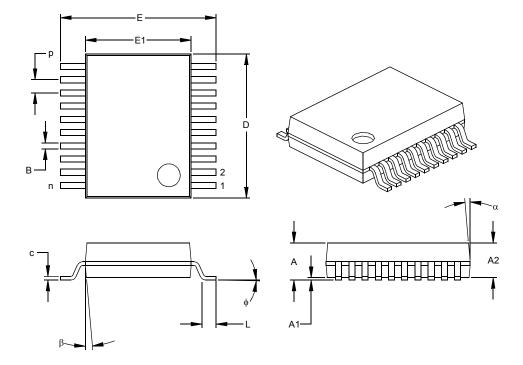

	Units		INCHES*		N	1ILLIMETERS	6
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

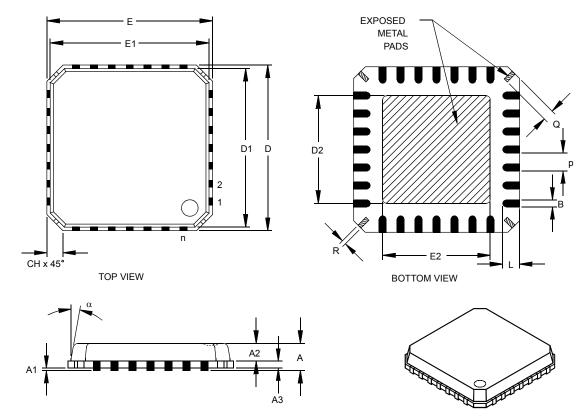

	Units		INCHES*		N	IILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18		
Pitch	р		.050			1.27		
Overall Height	А	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59	
Overall Length	D	.446	.454	.462	11.33	11.53	11.73	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle	φ	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)


	Units		INCHES*		Ν	IILLIMETERS	6
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	ф	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-150 Drawing No. C04-072

28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body (QFN)

	Units		INCHES		М	ILLIMETERS*		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.026 BSC			0.65 BSC		
Overall Height	А		.033	.039		0.85	1.00	
Molded Package Thickness	A2		.026	.031		0.65	0.80	
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05	
Base Thickness	A3		.008 REF.			0.20 REF.		
Overall Width	E	.236 BSC			6.00 BSC			
Molded Package Width	E1		.226 BSC			5.75 BSC		
Exposed Pad Width	E2	.140	.146	.152	3.55	3.70	3.85	
Overall Length	D		.236 BSC		6.00 BSC			
Molded Package Length	D1		.226 BSC			5.75 BSC		
Exposed Pad Length	D2	.140	.146	.152	3.55	3.70	3.85	
Lead Width	В	.009	.011	.014	0.23	0.28	0.35	
Lead Length	L	.020	.024	.030	0.50	0.60	0.75	
Tie Bar Width	R	.005	.007	.010	0.13	0.17	0.23	
Tie Bar Length	Q	.012	.016	.026	0.30	0.40	0.65	
Chamfer	СН	.009	.017	.024	0.24	0.42	0.60	
Mold Draft Angle Top	α			12 [°]			12 [°]	


*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC equivalent: M0-220

Drawing No. C04-114

28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body (QFN) Land Pattern and Solder Mask

	Units	INCHES			MILLIMETERS*		
[Dimension Limits	MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		.026 BSC			0.65 BSC	
Pad Width	В	.009	.011	.014	0.23	0.28	0.35
Pad Length	L	.020	.024	.030	0.50	0.60	0.75
Pad to Solder Mask	М	.005		.006	0.13		0.15

*Controlling Parameter

Drawing No. C04-2114

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
А	November 2002	This is a new data sheet.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices in this data sheet are listed in Table B-1.

TABLE B-1:DIFFERENCES BETWEEN THE PIC16F87 AND PIC16F88

Features	PIC16F87	PIC16F88
Analog-to-Digital Converter	N/A	10-bit, 7-channel

NOTES:

INDEX

	۱.
F	٩
•	

A/D	
Acquisition Requirements	119
ADIF Bit	118
Analog-to-Digital Converter	115
Associated Registers	
Calculating Acquisition Time	119
Configuring Analog Port Pins	120
Configuring the Interrupt	118
Configuring the Module	118
Conversion Clock	120
Conversions	121
Converter Characteristics	190
Delays	
Effects of a RESET	
GO/DONE Bit	118
Internal Sampling Switch (Rss) Impedance	
Operation During SLEEP	
Result Registers	
Source Impedance	119
Time Delays	
Using the CCP Trigger	
Absolute Maximum Ratings	
ACK	
ADCON0 Register	14, 115
ADCON1 Register	15, 115
Addressable Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
ADRESH Register	14, 115
ADRESH, ADRESL Register Pair	118
ADRESL Register	15, 115
ANSEL Register	
Application Notes	
AN556 (Implementing a Table Read)	25
AN578 (Use of the SSP Module in the	
I ² C Multi-Master Environment)	89
AN607 (Power-up Trouble Shooting)	135
Assembler	
MPASM Assembler	159
Asynchronous Reception	
Associated Registers	. 107, 109
Asynchronous Transmission	
Associated Registers	105
в	

Baud Rate Generator	
Associated Registers	101
BF Bit	
Block Diagrams	
A/D	118
Analog Input Model	119, 127
Capture Mode Operation	84
Comparator I/O Operating Modes	124
Comparator Output	126
Comparator Voltage Reference	130
Compare Mode Operation	
Fail-Safe Clock Monitor	145
In-Circuit Serial Programming Connections	148
Interrupt Logic	140
On-Chip Reset Circuit	134
PIC16F87	6
PIC16F88	7

DIAM	
PWM	
RA0/AN0:RA1/AN1 Pins	
RA2/AN2/CVREF/VREF- Pin	55
RA3/AN3/VREF+/C1OUT Pin	55
RA4/T0CKI/C2OUT Pin	56
RA5/MCLR/VPP Pin	56
RA6/OSC2/CLKO Pin	57
RA7/OSC1/CLKI Pin	58
RB0 Pin	61
RB1 Pin	
RB2 Pin	63
RB3 Pin	
RB4 Pin	
RB5 Pin	
RB6 Pin	
RB7 Pin	68
Recommended MCLR Circuit	135
SSP in I ² C Mode	
SSP in SPI Mode	
System Clock	
Timer0/WDT Prescaler	
Timer1	
Timer2	81
USART Receive	
USART Transmit	104
Watchdog Timer (WDT)	142
BOR. See Brown-out Reset	
BRGH bit	101
Brown-out Reset (BOR)	
BOR Status (BOR Bit)	

С

Capture/Compare/PWM (CCP)	83
Capture Mode	
Capture, Compare and Timer1	
Associated Registers	85
CCP Pin Configuration	85
CCP Prescaler	84
CCP Timer Resources	83
CCP1IF	84
CCPR1	84
CCPR1H:CCPR1L	84
Compare	
Mode	85
Special Event Trigger and	
A/D Conversions	85
Special Trigger Output of CCP1	85
PWM and Timer2	
Associated Registers	87
PWM Mode	86
PWM, Example Frequencies/Resolutions	87
Software Interrupt Mode	85
Timer1 Mode Selection	85
CCP1CON Register	14
CCP1M0 Bit	83
CCP1M1 Bit	83
CCP1M2 Bit	83
CCP1M3 Bit	83
CCP1X Bit	83
CCP1Y Bit	83
CCPR1H Register	14, 83
CCPR1L Register	14, 83

Clock Sources	
Selection Using OSCCON Register	
Clock Switching	
Transition and the Watchdog	43
Transition Delays	43
CMCON Register	15
Code Examples	
Call of a Subroutine in Page 1 from Page 0	25
Changing Between Capture Prescalers	
Changing Prescaler Assignment from WDT	
to Timer0	
Erasing a FLASH Program Memory Row	31
Implementing a Real-Time Clock Using a	
Timer1 Interrupt Service	
Initializing PORTA	
Reading a 16-bit Free-Running Timer	
Reading Data EEPROM	
Reading FLASH Program Memory	
Saving STATUS and W Registers in RAM	
Writing a 16-bit Free-Running Timer	
Writing to Data EEPROM	
Writing to FLASH Program Memory	
Code Protection	
Comparator Module	
Analog Input Connection Considerations	
Associated Registers	
Configuration	
Effects of RESET	
Interrupts	
Operation	
Operation During SLEEP	
Outputs Reference	
Response Time	
•	
Comparator Specifications Comparator Voltage Reference	
Associated Registers	
5	
Computed GOTO Configuration Bits	
Crystal and Ceramic Resonators	
CVRCON Register	

D

Data EEPROM Memory	
Associated Registers	
EEADR Register	
EEADRH Register	
EECON1 Register	
EECON2 Register	
EEDATA Register	
EEDATH Register	
Operation During Code Protect	
Protection Against Spurious Writes	
Reading	
Write Complete Flag (EEIF Bit)	
Writing	
Data Memory	
Special Function Registers	
DC and AC Characteristics	
Graphs and Tables	
DC Characteristics	
Internal RC Accuracy	
PIC16F87/88, PIC16LF87/88	
Power-down and Supply Current	
Supply Voltage	

Development Support	159
Device Differences	
Device Overview	
Direct Addressing	

Е

EEADR Register	16, 27
EEADRH Register	
EECON1 Register	
EECON2 Register	
EEDATA Register	
EEDATH Register	
Electrical Characteristics	165
Endurance	1
Errata	4
Exiting SLEEP with an Interrupt	51
External Clock Input	
External Clock Input (RA4/T0CKI). See Timer0	
External Interrupt Input (RB0/INT). See Interrupt	Sources
External Reference Signal	

F

Fail-Safe Clock Monitor	131, 145
FLASH Program Memory	27
Associated Registers	34
EEADR Register	27
EEADRH Register	27
EECON1 Register	27
EECON2 Register	27
EEDATA Register	27
EEDATH Register	27
Erasing	30
Reading	30
Writing	32
FSR Register	14, 15
1	
•	
I/O Ports	
PORTA	
PORTB	
TRISB Register	59
	05
Addressing	
Associated Registers	
Master Mode	
Mode	
Mode Selection	
Multi-Master Mode	
Reception	
SCL and SDA pins	
Slave Mode	
Transmission	
ICEPIC In-Circuit Emulator	
ID Locations	
In-Circuit Debugger	
In-Circuit Serial Programming	
In-Circuit Serial Programming (ICSP)	
INDF Register	
Indirect Addressing	

ADDLW 153 ADDWF 153 ANDWF 153 BCF 153 BCF 153 BCF 153 BTFSC 154 CLRF 154 CLRW 154 CLRW 154 CLRWDT 154 CLRWDT 154 CLRWDT 154 CLRWDT 155 DECF 155 DECFSZ 155 DECFSZ 155 DECFSZ 155 INCF 155 INCF 155 INCFSZ 155 IORUW 156 MOVF 156 MOVF 156 MOVF 156 NOP 156 SUBUW 158 SUBWF 158 SUBWF 158	Instruction Set
ADDWF 153 ANDLW 153 ANDWF 153 BCF 153 BSF 153 BTFSC 154 CALL 154 CLRF 154 CLRW 154 CLRWDT 154 CLRWDT 155 DECF 155 DECFSZ 155 DESCriptions 153 Format 151 GOTO 155 INCFSZ 155 IORUW 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 NOP 156 NOP 156 NOP 156 NOP 156 NOVE 156 NOVF 156 NOVF 156 SUBUW 158 SUBWF 158 SUBWF <	
ANDLW 153 ANDWF 153 BCF 153 BSF 153 BTFSC 154 BTFSS 154 CLR 154 CLRF 154 CLRW 154 CLRWDT 154 CLRWDT 154 COMF 155 DECF 155 DECFSZ 155 INCFSZ 155 INCFSZ 155 INCFSZ 155 INCFSZ 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 NOP 156 SUBUW 157 REF 157 SUBLW 158	
ANDWF 153 BCF 153 BSF 153 BTFSC 154 CALL 154 CALL 154 CLRW 154 CLRW 154 CLRW 154 CLRWDT 154 CLRWDT 155 DECF 155 DECFSZ 155 DECFSZ 155 INCF 155 INCF 156 IORUW 156 IORWF 156 IORWF 156 MOVF 156 MOVF 156 MOVWF 156 MOVUW 156 MOVUW 156 MOVUW 157 RETFIE 157 RETURN 151 RETFIE 157 SLEEP 157 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF	
BCF 153 BSF 153 BTFSC 154 BTFSS 154 CALL 154 CLRF 154 CLRW 154 CLRWDT 154 CLRWDT 154 CCRWDT 155 DECF 155 DECFSZ 155 Descriptions 153 Format 151 GOTO 155 INCFSZ 155 IORUW 156 IORWF 156 MOVF 156 MOVVE 156 MOVVE 156 NOP 156 NOP 156 NOVF 156 NOVF 156 NOP 156 NOP 156 NOP 156 NOP 156 NOP 156 Summary Table 157 SLEEP 157 SUBWF	
BSF 153 BTFSC 154 BTFSS 154 CALL 154 CLRF 154 CLRW 154 CLRW 154 CLRWDT 154 CCRW 155 DECF 155 DECFSZ 155 DECFSZ 155 INCFSZ 155 INCFSZ 155 INCFSZ 155 IORUW 156 MOVF 156 MOVF 156 MOVVF 156 MOVWF 156 NOP 156 NOP 156 NOV 156 NOV 156 NOV 156 NOV 156 NOP 156 RETUW 157 RETUR 157 RETUR 157 SUBUW 158 SUBWF 158 SUBWF 15	
BTFSC 154 BTFSS 154 CALL 154 CLRF 154 CLRWDT 154 CLRWDT 154 CLRWDT 154 CCRF 155 DECFSZ 155 Descriptions 153 Format 151 GOTO 155 INCFSZ 155 IORLW 156 IORWF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 NOP 156 SUBUW 157 RETLW 157 REF 157 SUBLW 158 SUBWF <	
BTFSS 154 CALL 154 CLRF 154 CLRW 154 CLRWDT 154 COMF 155 DECF 155 DECFSZ 155 Descriptions 153 Format 151 GOTO 155 INCF 155 IORUW 156 IORWF 156 MOVF 156 MOVVF 156 MOVUW 156 NOP 156 NOP 156 NOP 156 NOVWF 156 NOP 156 SUBUW 157 SUBUW 158 SUBWF 158 SUBWF 158 NORLW 158	
CALL 154 CLRF 154 CLRWDT 154 CLRWDT 155 DECF 155 DECFSZ 155 DECFSZ 155 DECFSZ 155 DECFSZ 155 NCF 155 INCF 155 INCF 156 IORUW 156 IORWF 156 MOVF 156 MOVF 156 MOVF 156 NOP 156 RETHE 157 RETUW 157 RETUW 157 REF 157 SLEEP 157 SUBWF 158 SUBWF 158 SUBWF 158 NORWF 158 NORWF 158 SUBWF 158 SUBWF 158 SUBWF 158 NORWF 158 NORWF 158 NORUW 158 SUBLW	
CLRF 154 CLRWDT 154 COMF 155 DECF 155 DECFSZ 155 Descriptions 153 Format 151 GOTO 155 INCF 155 INCF 155 IORLW 156 IORWF 156 MOVF 156 MOVF 156 MOVF 156 NOP 156 NOP 156 NOP 156 NOP 156 RETIW 157 RETUW 157 RETUN 157 RETUN 157 REF 157 SUBLW 158 SUBWF <	
CLRW 154 CLRWDT 154 COMF 155 DECF 155 DECFSZ 155 Descriptions 153 Format 151 GOTO 155 INCF 155 INCFSZ 155 IORLW 156 IORVF 156 MOVF 156 MOVF 156 MOVWF 156 NOP 156 NOP 156 NOP 156 RETURN 157 RETUR 157 RETURN 157 REF 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SURMAR 158 NORLW 158 SUBWF 158 SURUF <td></td>	
CLRWDT 154 COMF 155 DECF 155 DECFSZ 155 Descriptions 153 Format 151 GOTO 155 INCF 155 INCFSZ 155 IORWF 156 IORWF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 ROVWF 156 ROVWF 156 ROVWF 156 ROVWF 156 RETHE 157 RETURN 157 RETURN 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 NOR 158 INT Interrupt (RB0/INT). See Interrupt Sources 158 INTE Bit 19	
COMF 155 DECF 155 DESCFSZ 155 Descriptions 153 Format 151 GOTO 155 INCF 155 INCFSZ 155 IORUW 156 IORWF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 MOVF 156 MOVWF 156 RETTIN 157 RETTIN 157 RETURN 157 RETURN 157 SUBUW 158 SUBWF 158 SUBWF 158 SUBWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 157 INT INTERTY 158 INT INTERTY 158 XORWF 158 INT INTERTY 19 INTE Bit 19 INTE Bit 19 IN	CLRW154
DECF 155 DESCFSZ 155 Descriptions 153 Format 151 GOTO 155 INCF 155 INCFSZ 155 IORLW 156 IORWF 156 MOVF 156 MOVWF 156 MOVWF 156 NOP 156 Read-Modify-Write Operations 151 RETFIE 157 RETURN 157 RETURN 157 RETURN 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 NORLW 158 SUBWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTRC Modes	CLRWDT 154
DECFSZ 155 Descriptions 153 Format 151 GOTO 155 INCF 155 INCFSZ 155 IORUW 156 IORWF 156 MOVF 156 MOVF 156 MOVVE 156 MOVWF 156 ROP 156 ROVUW 156 ROVUW 156 ROVUW 156 ROVUWF 156 ROVUWF 156 ROVUWF 156 RETHUW 157 RETURN 157 RETURN 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBUW 158 SUBUWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register 19 GIE Bit 19 INTE Bit 19<	COMF
Descriptions 153 Format 151 GOTO 155 INCF 155 INCFSZ 155 IORLW 156 IORWF 156 MOVF 156 MOVF 156 MOVWF 156 ROP 156 RADYWF 156 ROP 156 RADYWF 156 ROP 156 RETLW 157 RETURN 157 RETURN 157 RLF 157 SUBW 158 SUBWF 158 SUBWF 158 SUBWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register GIE Bit 19 INTE Bit 19 INTE Bit 19 INTE Bit 19 RBIF Bit 19 INTRC Modes 38 Interrupt Sources 131, 140 <tr< td=""><td>DECF</td></tr<>	DECF
Descriptions 153 Format 151 GOTO 155 INCF 155 INCFSZ 155 IORLW 156 IORWF 156 MOVF 156 MOVF 156 MOVWF 156 ROP 156 RADYWF 156 ROP 156 RADYWF 156 ROP 156 RETLW 157 RETURN 157 RETURN 157 RLF 157 SUBW 158 SUBWF 158 SUBWF 158 SUBWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register GIE Bit 19 INTE Bit 19 INTE Bit 19 INTE Bit 19 RBIF Bit 19 INTRC Modes 38 Interrupt Sources 131, 140 <tr< td=""><td>DECFSZ</td></tr<>	DECFSZ
Format 151 GOTO 155 INCF 155 INCFSZ 155 IORWF 156 IORWF 156 MOVF 156 MOVF 156 MOVF 156 MOVWF 156 MOVWF 156 NOP 156 Read-Modify-Write Operations 151 RETTFIE 157 RETUW 157 RETURN 157 RLF 157 SUBLW 158 SUBLW 158 SUBWF 158 SUBWF 158 NORWF 158 NORWF 158 NORWF 158 NORWF 158 NORWF 158 SUBWF 158 NORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 179 INTE Bit 19 INTE Bit 19 RBIE B	
GOTO 155 INCF 155 INCFSZ 155 IORLW 156 IORWF 156 MOVF 156 MOVF 156 MOVWF 156 NOP 156 MOVWF 156 ROP 156 Read-Modify-Write Operations 151 RETFIE 157 RETUW 157 REF 157 REF 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 NORUW 158 INT Interrupt (RB0/INT). See Interrupt Sources INTE Bit 19 INTE Bit 19	•
INCF 155 INCFSZ 155 IORLW 156 IORWF 156 MOVF 156 MOVF 156 MOVF 156 MOVWF 156 NOP 156 NOP 156 ROVWF 157 RETIE 157 RETUW 157 RETURN 157 RETURN 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 XORUW 158 XORUW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register GIE Bit 19 INTE Bit 19 INTE Bit 19 RBIF Bit 19 INTRC Modes 38 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 <td></td>	
INCFSZ 155 IORLW 156 IORWF 156 MOVF 156 MOVF 156 MOVKF 156 MOVWF 156 MOVWF 156 NOP 156 Read-Modify-Write Operations 151 RETFIE 157 RETUW 157 RETURN 157 REF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 NORWF 158 NORWF 158 NORWF 158 NORWF 158 NORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 151 INTCON Register 19 GIE Bit 19 INTE Bit 19 RBIF Bit 19 RBIF Bit 19 INTRC Modes 38	
IORLW 156 IORWF 156 MOVF 156 MOVWF 156 NOP 156 ROVWF 156 NOP 156 Read-Modify-Write Operations 151 RETFIE 157 RETUW 157 RETUN 157 REF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 NORWF 158 NORWF 158 NORWF 158 SUBWF 158 SUBWF 158 NORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 101 INTE Bit 19 INTE Bit 19 INTE Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 <td></td>	
IORWF 156 MOVF 156 MOVUW 156 MOVWF 156 NOP 156 Read-Modify-Write Operations 151 RETFIE 157 RETLW 157 RETURN 157 RETURN 157 RLF 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 NORLW 158 NORLW 158 NORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 117 INTCON Register 158 INTE Bit 19 INTF Bit 19 PEIE Bit 19 RBIF Bit 19 INTRC Modes 38 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Inte	
MOVF 156 MOVLW 156 MOVWF 156 NOP 156 Read-Modify-Write Operations 151 RETFIE 157 RETLW 157 RETURN 157 REF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUMMF 158 SURWF 158 NORUW 158 NORUW 158 NORUW 158 NORUW 158 NORUWF 158 NORUWF 158 NORUWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register GIE Bit 19 INTE Bit 19 INT F Bit 19 PEIE Bit 19 INTRC Modes 37 INTRC Modes 37 INTRC Modes 38 Internal Reference Signal	
MOVLW 156 MOVWF 156 NOP 156 Read-Modify-Write Operations 151 RETFIE 157 RETLW 157 RETURN 157 RETURN 157 RETURN 157 REF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 NORUW 158 NORUW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 111 INTCON Register 158 GIE Bit 19 INTE Bit 19 PEIE Bit 19 RBIF Bit 19 RBIE Bit 19 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal 125 Interrupt Sources 131, 140	
MOVWF 156 NOP 156 Read-Modify-Write Operations 151 RETFIE 157 RETLW 157 RETURN 157 RETURN 157 RETURN 157 REF 157 REF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SURWF 158 NORUW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 117 INTCON Register 19 GIE Bit 19 INTE Bit 19 INTF Bit 19 RBIF Bit 19 RBIF Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal 125 Internal Reference Signal 125	
NOP 156 Read-Modify-Write Operations 151 RETFIE 157 RETLW 157 RETURN 157 RETURN 157 RETURN 157 REF 157 REF 157 REF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SURMPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 191 INTCON Register 19 GIE Bit 19 INTE Bit 19 INTF Bit 19 RBIE Bit 19 RBIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal 125 Interrupt Sources 131, 140	
Read-Modify-Write Operations 151 RETFIE 157 RETLW 157 RETURN 157 RETURN 157 REF 157 RRF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SURAPF 158 XORUW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 117 INTCON Register 19 GIE Bit 19 INTE Bit 19 INTF Bit 19 PEIE Bit 19 RBIF Bit 19 INTRC Modes 38 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal 125 Internal Reference Signal 125 Interrupt Sources	MOVWF156
RETFIE 157 RETUW 157 RETURN 157 RLF 157 RRF 157 SUBLW 158 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SURMPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 191 INTCON Register 19 GIE Bit 19 INTF Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal 125 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change	
RETLW 157 RETURN 157 RLF 157 RRF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SURMARY Table 152 SWAPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 191 INTCON Register 19 GIE Bit 19 INTF Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal	Read-Modify-Write Operations
RETURN 157 RLF 157 RRF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUMMary Table 152 SWAPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register 19 GIE Bit 19 INTE Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 RBIF Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	RETFIE
RLF 157 RRF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SURPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 158 INTCON Register 19 GIE Bit 19 INTE Bit 19 INTF Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	RETLW
RLF 157 RRF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SURPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 158 INTCON Register 19 GIE Bit 19 INTE Bit 19 INTF Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	RETURN 157
RRF 157 SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 SUBWF 158 SUBWF 158 SURPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 158 INTCON Register 19 GIE Bit 19 INTE Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
SLEEP 157 SUBLW 158 SUBWF 158 SUBWF 158 Summary Table 152 SWAPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 158 INT CON Register 19 GIE Bit 19 INTE Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
SUBLW 158 SUBWF 158 Summary Table 152 SWAPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 158 INTCON Register 19 GIE Bit 19 INTE Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
SUBWF 158 Summary Table 152 SWAPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 178 INTCON Register 19 GIE Bit 19 INTE Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
Summary Table 152 SWAPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources 158 INTCON Register 19 GIE Bit 19 INTE Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
SWAPF 158 XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register GIE Bit 19 INTE Bit 19 INTF Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 RBIF Bit 19 INTROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
XORLW 158 XORWF 158 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register GIE Bit 19 INTE Bit 19 INTF Bit 19 PEIE Bit 19 RBIF Bit 19 RBIF Bit 19 TMROIE Bit 19 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
XORWF158INT Interrupt (RB0/INT). See Interrupt SourcesINTCON RegisterGIE Bit19INTE Bit19INTF Bit19PEIE Bit19RBIF Bit19RBIF Bit19TMR0IE Bit19Internal Oscillator Block37INTRC Modes38Internal Reference Signal125Interrupt Sources131, 140RB0/INT Pin, External141TMR0 Overflow141USART Receive/Transmit Complete99Interrupts59	
INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register GIE Bit	
INTCON Register GIE Bit	
GIE Bit 19 INTE Bit 19 INTF Bit 19 PEIE Bit 19 RBIE Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Internupt Sources 131, 140 RB0/INT Pin, External 141 TMR0 Overflow 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
INTE Bit 19 INTF Bit 19 PEIE Bit 19 RBIE Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 TMR0 Overflow 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
INTF Bit 19 PEIE Bit 19 RBIE Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 TMR0 Overflow 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	GIE Bit 19
PEIE Bit 19 RBIE Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 TMR0 Overflow 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	INTE Bit 19
RBIE Bit 19 RBIF Bit 19 TMROIE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 TMR0 Overflow 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	INTF Bit 19
RBIF Bit19TMROIE Bit19Internal Oscillator Block37INTRC Modes38Internal Reference Signal125Interrupt Sources131, 140RB0/INT Pin, External141TMR0 Overflow141USART Receive/Transmit Complete99InterruptsRB7:RB4 Port Change59	PEIE Bit
RBIF Bit19TMROIE Bit19Internal Oscillator Block37INTRC Modes38Internal Reference Signal125Interrupt Sources131, 140RB0/INT Pin, External141TMR0 Overflow141USART Receive/Transmit Complete99InterruptsRB7:RB4 Port Change59	RBIE Bit
TMR0IE Bit 19 Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 TMR0 Overflow 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
Internal Oscillator Block 37 INTRC Modes 38 Internal Reference Signal 125 Interrupt Sources 131, 140 RB0/INT Pin, External 141 TMR0 Overflow 141 USART Receive/Transmit Complete 99 Interrupts RB7:RB4 Port Change 59	
INTRC Modes	
Internal Reference Signal	
Interrupt Sources	
RB0/INT Pin, External	
TMR0 Overflow	
USART Receive/Transmit Complete	
Interrupts RB7:RB4 Port Change	
RB7:RB4 Port Change59	
Interrupts, Context Saving During141	

Interrupts, Enable Bits	
A/D Converter Interrupt Enable (ADIE Bit)	20
CCP1 Interrupt Enable (CCP1IE Bit)	
Comparator Interrupt Enable (CMIE Bit)	
EEPROM Write Operation Interrupt	
Enable (EEIE Bit)	22
Global Interrupt Enable (GIE Bit)	
Interrupt-on-Change (RB7:RB4) Enable	,
(RBIE Bit)	141
Oscillator Fail Interrupt Enable (OSFIE Bit)	22
Peripheral Interrupt Enable (PEIE Bit)	
Port Change Interrupt Enable (RBIE Bit)	
RB0/INT Enable (INTE Bit)	
Synchronous Serial Port (SSP) Interrupt	
Enable (SSPIE Bit)	20
TMR0 Overflow Enable (TMR0IE Bit)	19
TMR1 Overflow Interrupt Enable (TMR1IE Bit)	
TMR2 to PR2 Match Interrupt Enable	
(TMR2IE Bit)	20
USART Interrupt Enable (RCIE Bit)	20
USART Transmit Interrupt Enable (TXIE Bit)	
Interrupts, Flag Bits	
A/D Converter Interrupt Flag (ADIF Bit)	21
CCP1 Interrupt Flag (CCP1IF Bit)	21
Comparator Interrupt Flag (CMIF Bit)	23
EEPROM Write Operation Interrupt	
Flag (EEIF Bit)	23
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit)	
Oscillator Fail Interrupt Flag (OSFIF Bit)	23
RB0/INT Flag (INTF Bit)	19
Synchronous Serial Port (SSP) Interrupt	
Flag (SSPIF Bit)	
TMR0 Overflow Flag (TMR0IF Bit)	141
TMR1 Overflow Interrupt Flag (TMR1IF Bit)	21
TMR2 to PR2 Interrupt Flag (TMR2IF Bit)	
USART Receive Interrupt Flag (RCIF Bit)	21
USART Transmit Interrupt Flag (TXIF Bit)	21
INTRC Modes	
Adjustment	38
К	

KEELOQ Evaluation and Programming Tools	. 162

L

Loading of PC	
Low Voltage ICSP Programming	149

Μ

Master Clear (MCLR)	
MCLR Reset, Normal Operation	.134, 137
MCLR Reset, SLEEP	.134, 137
Operation and ESD Protection	135
Memory Organization	11
Data Memory	
Program Memory	11
MPLAB C17 and MPLAB C18 C Compilers	159
MPLAB ICD In-Circuit Debugger	161
MPLAB ICE High Performance Universal	
In-Circuit Emulator with MPLAB IDE	160
MPLAB Integrated Development	
Environment Software	159
MPLINK Object Linker/MPLIB Object Librarian	160

0

Opcode Field Descriptions	
OPTION Register	
INTEDG Bit	
PS2:PS0 Bits	
PSA Bit	
RBPU Bit	
TOCS Bit	
TOSE Bit	
OSCCON Register	
Oscillator Configuration	
ECIO	
EXTRC	
HS	35, 136
INTIO1	35
INTIO2	35
INTRC	
LP	35, 136
RC	· · · ·
RCIO	
XT	
	55, 150
Oscillator Control Register Modifying IRCF Bits	40
Clock Transition Sequence	
Oscillator Delay upon Power-up and Wake-up	42
Oscillator Start-up Timer (OST)	
Oscillator Switching	
OSCTUNE Register	
-	
Р	
•	
Packaging Information	195
Packaging Information	
Packaging Information	
Packaging Information Marking Paging, Program Memory PCL Register	
Packaging Information Marking Paging, Program Memory PCL Register PCLATH Register	
Packaging Information Marking Paging, Program Memory PCL Register PCLATH Register PCON Register	
Packaging Information	
Packaging Information Marking Paging, Program Memory PCL Register PCLATH Register PCON Register BOR Bit POR Bit	
Packaging Information Marking Paging, Program Memory PCL Register PCLATH Register PCON Register BOR Bit POR Bit PICDEM 1 Low Cost PICmicro	
Packaging Information	
Packaging Information Marking Paging, Program Memory PCL Register PCLATH Register PCLATH Register PCON Register BOR Bit POR Bit POR Bit PICDEM 1 Low Cost PICmicro Demonstration Board PICDEM 17 Demonstration Board PICDEM 17 Demonstration Board PICDEM 2 Low Cost PIC16CXXX Demonstration Board PICDEM 3 Low Cost PIC16CXXX Demonstration Board PICDEM 3 Low Cost PIC16CXXX Demonstration Board PICSTART Plus Entry Level Development Programmer PIE1 Register	
Packaging Information	

 RCIE Bit
 20

 SSPIE Bit
 20

 TMR1IE Bit
 20

 TMR2IE Bit
 20

 TXIE Bit
 20

 PIE2 Register
 15

 CMIE Bit
 22

 EEIE Bit
 22

 OSFIE Bit
 22

PIC16F87/888

PIR1 Register	
ADIF Bit	21
CCP1IF Bit	
RCIF Bit	
SSPIF Bit	
TMR1IF Bit	
TMR2IF Bit	
TXIF Bit	
PIR2 Register	۱ ک۱ ۱ ۸
CMIF Bit	
EEIF Bit	
OSFIF Bit	
POP	25
POR. See Power-on Reset	
PORTA	
Associated Register Summary	54
PORTA Register	
PORTB	9
Associated Register Summary	
PORTB Register	
Pull-up Enable (RBPU Bit)	
RB0/INT Edge Select (INTEDG Bit)	
RB0/INT Pin, External	
RB2/SDO/RX/DT Pin	
RB5/SS/TX/CK Pin	
RB7:RB4 Interrupt-on-Change	141
RB7:RB4 Interrupt-on-Change	
Enable (RBIE Bit)	141
RB7:RB4 Interrupt-on-Change Flag	
(RBIF Bit)	19, 141
TRISB Register	16, 99
PORTB Register	
Postscaler, WDT	
Assignment (PSA Bit)	18
Rate Select (PS2:PS0 Bits)	
Power Managed Modes	
RC_RUN	
SEC_RUN	
SEC_RUN/RC_RUN to Primary Clock Source .	
Power-down Mode. See SLEEP	
	405 403
Power-on Reset (POR)	135, 137
POR Status (POR Bit)	
Power Control (PCON) Register	
Power-do <u>wn (</u> PD Bit)	
Time-out (TO Bit)	17, 134
Power-up Timer (PWRT)	131, 135
PR2 Register	15, 81
Prescaler, Timer0	
Assignment (PSA Bit)	
Rate Select (PS2:PS0 Bits)	
PRO MATE II Universal Device Programmer	
Program Counter	
0	107
RESET Conditions	137
Program Memory	
Interrupt Vector	
Map and Stack	
PIC16F87/88	
Paging	
RESET Vector	
Program Verification	148
PUSH	25

Pinout Descriptions

R

R/W Bit	
RA0/AN0 Pin	8
RA1/AN1 Pin	8
RA2/AN2/CVREF/VREF- Pin	8
RA3/AN3/VREF+/C1OUT Pin	
RA4/AN4/T0CKI/C2OUT Pin	8
RA5/MCLR/VPP Pin	8
RA6/OSC2/CLKO Pin	8
RA7/OSC1/CLKI Pin	
RB0/INT/CCP1 Pin	9
RB1/SDI/SDA Pin	9
RB2/SDO/RX/DT Pin	
RB3/CCP1/PGM Pin	9
RB4/SCK/SCL Pin	9
RB5/SS/TX/CK Pin	
RB6/T1OSO/T1CKI/PGC/AN5 Pin	9
RB7/T1OSI/PGD/AN6 Pin	9
RBIF Bit	59
RCIO Oscillator	
RCREG Register	14
RCSTA Register	14
ADDEN Bit	
CREN Bit	100
FERR Bit	100
RX9 Bit	100
RX9D Bit	100
SPEN Bit	99, 100
SREN Bit	100
Receive Overflow Indicator Bit, SSPOV	91
Register File	12
Register File Map	
PIC16F87	12
PIC16F88	13
Registers	
ADCON0 (A/D Control 0)	116
ADCON1 (A/D Control 1)	
ANSEL (Analog Select)	115
CCP1CON (Capture/Compare/PWM	
Control 1)	
CMCON (Comparator Control)	123
CVRCON (Comparator Voltage Reference	
Control)	129
EECON1 (Data EEPROM Access Control 1)	
Initialization Conditions (table)	137–138
INTCON (Interrupt Control)	19
OPTION	
OPTION_REG	
OSCCON (Oscillator Control)	
OSCTUNE (Oscillator Tuning)	
PCON (Power Control)	24
PIE1 (Peripheral Interrupt Enable 1)	
PIE2 (Peripheral Interrupt Enable 2)	
PIR1 (Peripheral Interrupt Status 1)	
PIR2 (Peripheral Interrupt Status 2)	23
RCSTA (Receive Status and Control)	
Special Function, Summary	
SSPCON (Synchronous Serial Port Control 1)	
SSPSTAT (Synchronous Serial Port Status)	90
STATUS	
T1CON (Timer1 Control)	
T2CON (Timer2 Control)	
TXSTA (Transmit Status and Control)	

RESET	
Power-on Reset (POR). See Power-on Reset (POR)	~ -
RESET Conditions for All Registers	
RESET Conditions for PCON Register	
RESET Conditions for Program Counter	
RESET Conditions for STATUS Register	51
Revision History	.01
RP0 Bit	11
RP1 Bit	11
S	
Sales and Support 2	13
SCI. See USART SCL	04
Serial Communication Interface. See USART	94
Slave Mode	
SCL	
SDA	
SLEEP	
Software Simulator (MPLAB SIM)	
SPBRG Register	
Special Event Trigger	
Special Function Registers	
Special Function Registers (SFRs)	
SPI	
Associated Registers	
Serial Clock	
Serial Data In	
Serial Data Out	
Slave Select	89
SSP	04
I ² C	94
I ² C Operation	94
SSPADD Register	
SSPBUF Register	
SSPCON Register	
SSPOV	91
SSPOV Bit	94
SSPSTAT Register	15
Stack	25
Overflows	
Underflow	25
STATUS Register	47
C Bit DC Bit	
IRP Bit	
PD Bit	
RP Bit	
TO Bit	
Z Bit	
Synchronous Master Reception	
Associated Registers 1	12
Synchronous Master Transmission	
Associated Registers 1	
Synchronous Serial Port (SSP)	
	89
Overview	89 89
Overview SPI Mode	89 89
Overview SPI Mode Synchronous Slave Reception	89 89 89
Overview SPI Mode Synchronous Slave Reception Associated Registers	89 89 89
Overview SPI Mode Synchronous Slave Reception	89 89 89 14

Т

T1CKPS0 Bit				
T1CKPS1 Bit7				
T1CON Register				
T1OSCEN Bit				
T1SYNC Bit				
T2CKPS0 Bit				
T2CKPS1 Bit T2CON Register				
TAD				
Time-out Sequence				
Timer0				
Associated Registers				
Clock Source Edge Select (T0SE Bit)				
Clock Source Select (T0CS Bit)				
External Clock	70			
Interrupt	69			
Operation				
Overflow Enable (TMR0IE Bit)				
Overflow Flag (TMR0IF Bit)				
Overflow Interrupt				
Prescaler				
TOCKI				
Timer1 Associated Registers				
Associated Registers	79 76			
Capacitor Selection	70 77			
Counter Operation				
Operation				
Operation in Timer Mode				
Öscillator	77			
Oscillator Layout Considerations				
Prescaler	78			
Reading and Writing in Asynchronous				
Counter Mode				
Resetting Timer1 Register Pair	78			
Resetting Timer1 Using a CCP Trigger Output Synchronized Counter Mode	/ / 75			
Use as a Real-Time Clock	78			
Use as a Real-Time Clock Timer2	78 81			
Use as a Real-Time Clock Timer2 Associated Registers	78 81 82			
Use as a Real-Time Clock Timer2 Associated Registers Output	78 81 82 81			
Use as a Real-Time Clock Timer2 Associated Registers	78 81 82 81 81			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler	78 81 81 81 81 81			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Timing Diagrams	78 81 82 81 81 81			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion	78 81 81 81 81 81 81			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion Asynchronous Master Transmission	78 81 81 81 81 81 81			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion Asynchronous Master Transmission Asynchronous Master Transmission	78 81 81 81 81 81 			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion Asynchronous Master Transmission Asynchronous Master Transmission (Back to Back)	78 81 81 81 81 81 191 105			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Reception	78 81 81 81 81 81 191 105			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Reception Asynchronous Reception with Address	78 81 82 81 81 81 			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Reception Asynchronous Reception with Address Byte First	78 8181 8281 81 81 81 81 			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Reception Asynchronous Reception with Address Byte First Asynchronous Reception with Address Detect	78 81 81 81 81 191 105 105 107 109 109			
Use as a Real-Time Clock Timer2	78 81 81 81 81 191 105 105 105 107 109 109 109 109			
Use as a Real-Time Clock Timer2 Associated Registers Output Postscaler Prescaler and Postscaler Prescaler and Postscaler Timing Diagrams A/D Conversion Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Master Transmission Asynchronous Reception Asynchronous Reception with Address Byte First Asynchronous Reception with Address Detect	78 81 81 81 81 81 			
Use as a Real-Time Clock Timer2	78 81 81 81 81 81 			
Use as a Real-Time Clock Timer2	78 81 81 81 81 81 			
Use as a Real-Time Clock Timer2	78 81 81 81 81 81 			
Use as a Real-Time Clock Timer2	78 81 81 81 81 81 191 105 105 105 105 105 105 105 109 183 180 179 145 187 187 186			
Use as a Real-Time Clock Timer2	78 81 81 81 81 81 81 81 81 			

LP Clock to Primary System Clock after	
RESET (EC, RC, INTRC)	49
LP Clock to Primary System Clock after	
RESET (HS, XT, LP)	
PWM Output	
RESET, Watchdog Timer, Oscillator Start-up	
Timer and Power-up Timer	181
Slow Rise Time (MCLR Tied to VDD Through	400
RC Network)	
SPI Master Mode	
SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1)	
SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 1)	93, 105
Switching to SEC_RUN Mode	
Synchronous Reception (Master Mode, SREN)	
Synchronous Transmission Synchronous Transmission (Through TXEN)	
	111
Time-out Sequence on Power-up (MCLR	400
Tied to VDD Through Pull-up Resistor)	138
Time-out Sequence on Power-up (MCLR Tied	400
to VDD Through RC Network): Case 1	139
Time-out Sequence on Power-up (MCLR Tied	400
to VDD Through RC Network): Case 2	
Timer0 and Timer1 External Clock	
Timer1 Incrementing Edge	
Transition Between SEC_RUN/RC_RUN	47
and Primary Clock	
Two-Speed Start-up	
USART Synchronous Receive (Master/Slave)	189
USART Synchronous Transmission	
	400
(Master/Slave)	
(Master/Slave) Wake-up from SLEEP via Interrupt	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to	147
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode	147 44
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology	147 44 178
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register	147 44 178 14
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit	147 44 178 14 74
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register	147 44 178 14 74 14
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register	147 44 178 14 14 14 14
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1L Register TMR1DN Bit	147 44 178 14 14 14 14 74
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1DN Bit TMR2 Register	147 44 178 14 14 14 14 14 74 14
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1L Register TMR1ON Bit TMR2 Register TMR2ON Bit	147 44 178 14 14 14 14 14 14 14 14 14 14 147
(Master/Slave)	147 147 178 14 14 14 14 14 14 14 14 147 147 147 147 147 147 148
(Master/Slave)	147 44 178 14 14 14 14 14 14 14 14 147 147 147 147 147 147 147 147 147 147 147 147 147 147 144 147 144 144 144 144 144 144 144 144 144 144 144
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1L Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 ON Bit TMR0 Register TOUTPS0 Bit TOUTPS1 Bit	147
(Master/Slave)	147
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1L Register TMR1L Register TMR1DN Bit TMR2 Register TMR2 Register TMR2ON Bit TMR2 Register TMR0 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS2 Bit TOUTPS3 Bit	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1L Register TMR1L Register TMR1DN Bit TMR2 Register TMR2 Register TMR2 Register TMR2 Register TMR2 Register TMR2 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS2 Bit TOUTPS3 Bit TRISA Register	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1L Register TMR1L Register TMR1DN Bit TMR2 Register TMR2 Register TMR2ON Bit TMR2 Register TMR0 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TOUTPS3 Bit TRISA Register TRISB Register	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1L Register TMR1L Register TMR1DN Bit TMR2 Register TMR2 Register TMR2ON Bit TMR0 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TOUTPS3 Bit TRISA Register TRISA Register TRISB Register Two-Speed Clock Start-up Mode	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1L Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 Register TMR2ON Bit TMR0 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TOUTPS3 Bit TRISA Register TRISB Register TWo-Speed Clock Start-up Mode Two-Speed Start-up	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1DN Bit TMR2 Register TMR2 Register TMR2 Register TMR2 Register TMR2 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TOUTPS2 Bit TOUTPS3 Bit TRISA Register TRISB Register Two-Speed Clock Start-up Mode Two-Speed Start-up TXREG Register	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1L Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 Register TMR2ON Bit TMR0 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TOUTPS3 Bit TRISA Register TRISB Register TWo-Speed Clock Start-up Mode Two-Speed Start-up TXREG Register	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 Register TMR2ON Bit TMR2 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS2 Bit TOUTPS2 Bit TRISA Register TRISB Register TRISB Register TRISB Register TWo-Speed Clock Start-up Mode Two-Speed Start-up TXREG Register TXSTA Register BRGH Bit	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 Register TMR2ON Bit TMR2 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TRISA Register TRISB Register TRISB Register TRISB Register TXSTA Register TXSTA Register BRGH Bit CSRC Bit	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 Register TMR2ON Bit TMR0 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS3 Bit TRISA Register TRISB Register TRISB Register TWo-Speed Clock Start-up Mode Two-Speed Start-up TXREG Register TXSTA Register BRGH Bit CSRC Bit SYNC Bit	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 Register TMR2ON Bit TMR2 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TRISA Register TRISB Register TRISB Register TRISB Register TXSTA Register TXSTA Register BRGH Bit CSRC Bit SYNC Bit TRIST	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 Register TMR2ON Bit TMR2 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TRISA Register TRISB Register TRISB Register TRISB Register TXREG Register TXREG Register TXSTA Register BRGH Bit CSRC Bit TRIST TAREG REGISTER TRIST REGISTER TRIST REGISTER TRIST REGISTER TXSTA REGISTER	
(Master/Slave) Wake-up from SLEEP via Interrupt XT, HS, LP, EC and EXTRC to RC_RUN Mode Timing Parameter Symbology TMR0 Register TMR1CS Bit TMR1H Register TMR1L Register TMR1DN Bit TMR2 Register TMR2ON Bit TMR2 Register TMR2ON Bit TMR2 Register TOUTPS0 Bit TOUTPS0 Bit TOUTPS1 Bit TOUTPS1 Bit TOUTPS2 Bit TRISA Register TRISB Register TRISB Register TRISB Register TXSTA Register TXSTA Register BRGH Bit CSRC Bit SYNC Bit TRIST	

U

USART	
Address Detect Enable (ADDEN Bit)	100
Asynchronous Mode	104
Asynchronous Receive (9-bit Mode)	108
Asynchronous Receive with Address Detect.	
See Asynchronous Receive (9-bit Mode).	
Asynchronous Receiver	
Asynchronous Reception	
Asynchronous Transmitter	
Baud Rate Generator (BRG)	
Baud Rate Formula	101
Baud Rates, Asynchronous Mode	
(BRGH = 0)	102, 103
Baud Rates, Asynchronous Mode	
(BRGH = 1)	102
High Baud Rate Select (BRGH Bit)	
INTRC Operation	
Low Power Mode Operation	
Sampling	
Clock Source Select (CSRC Bit)	
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Mode Select (SYNC Bit)	
Receive Data, 9th bit (RX9D Bit)	
Receive Enable, 9-bit (RX9 Bit)	
Serial Port Enable (SPEN Bit) Single Receive Enable (SREN Bit)	
Synchronous Master Mode	
Synchronous Master Reception	
Synchronous Master Transmission	
Synchronous Slave Mode	
Synchronous Slave Reception	
Synchronous Slave Transmit	
Transmit Data, 9th Bit (TX9D)	
Transmit Enable (TXEN Bit)	
Transmit Enable, Nine-bit (TX9 Bit)	
Transmit Shift Register Status (TRMT Bit)	
USART Synchronous Receive Requirements	

v

VDD Pin	
Voltage Reference Specifications	
Vss Pin	
W	

Wake-up from SLEEP	
Interrupts	
MCLR Reset	
WDT Reset	137
Wake-up Using Interrupts	147
Watchdog Timer (WDT)	
Associated Registers	
WDT Reset, Normal Operation	
WDT Reset, SLEEP	
WCOL	
WDTCON Register	16
Write Collision Detect Bit, WCOL	
WWW, On-Line Support	

NOTES:

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

092002

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
From	n: Name		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Appl	ication (optional):		
Wou	ld you like a reply?YN		
		ature Number: DS30487A	
Que	stions:		
1 \	What are the best features of this docu	iment?	
1. 1			
-			
2	How does this document meet your ha	ardware and software development needs?	
-			
3. Do you find the organization of this document easy to follow? If not, why?		cument easy to follow? If not, why?	
	5. Do you and the organization of this document easy to follow? If not, why?		
-			
4. \	What additions to the document do vo	u think would enhance the structure and subject?	
	,		
-			
5. \	What deletions from the document cou	Id be made without affecting the overall usefulness?	
-			
6. I	Is there any incorrect or misleading inf	ormation (what and where)?	
	,		
-			
- 7. I	How would you improve this document	t?	
-			

PIC16F87/88 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16F87-I/P = Industrial temp., PDIP package, Extended VDD limits. b) PIC16F87-I/SO = Industrial temp., SOIC package, normal VDD limits.
Device	PIC16F87: Standard Vpp range PIC16F87T: (Tape and Reel) PIC16LF87: Extended Vpp range	package, normal voo innits.
Temperature Range	$- = 0^{\circ}C \text{ to } +70^{\circ}C$ I = -40^{\circ}C to +85^{\circ}C	
Package	P = PDIP SO = SOIC SS = SSOP ML = QFN	Note 1: F = CMOS FLASH
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	LF = Low Power CMOS FLASH 2: T = in tape and reel - SOIC, SSOP packages only.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 **China - Shanghai** Microchip Technology Consulting (Shanghai)

Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 15-16, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-82350361 Fax: 86-755-82366086

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office Divyasree Chambers

1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 FUROPE Austria Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Microchip Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

11/15/02

Advance Information